Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Лабораторная работа. ИЗУЧЕНИЕ СОУДАРЕНИЯ ШАРОВ


 

Цели работы:

1) изучение законов упругого и неупругого соударения шаров,

2) определение отношения скоростей и масс шаров.

 

Основные понятия и закономерности

 

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение) – это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. При ударе тела испытывают деформацию. Явление удара протекает обычно в сотые, тысячные и миллионные доли секунды. Время соударения тем меньше, чем меньше деформации тел. Так как при этом количество движения тел изменяется на конечную величину, то при соударении развиваются огромные силы.

Процесс удара разделяют на две фазы.

Первая фаза – с момента соприкосновения тел до момента, когда их относительная скорость становится равной нулю.

Вторая фаза – от этого последнего момента до момента, когда соприкосновение тел прекращается.

С момента возникновения деформаций в местах соприкосновения тел начинают действовать силы, направленные противоположно относительным скоростям тел. При этом происходит переход энергии механического движения тел в энергию упругой деформации (первая фаза удара).

Во второй фазе удара, когда относительная скорость стала равной нулю, начинается частичное или полное восстановление формы тел, затем тела расходятся и удар заканчивается. В этой фазе кинетическая энергия системы растет за счет положительной работы упругих сил.

У реальных тел относительная скорость после удара не достигает той величины, которую она имела до удара, так как часть механической энергии необратимо переходит во внутреннюю и другие формы энергии.

Различают два предельных типа удара:

а) удар абсолютно неупругий;

б) удар абсолютно упругий.

Абсолютно неупругий удар (близкий к нему) возникает при столкновении тел из пластических материалов (глина, пластилин, свинец и др.), форма которых не восстанавливается после прекращения действия внешней силы.

Абсолютно неупругим ударом называется удар, после которого возникшие в телах деформации полностью сохраняются. После абсолютно неупругого удара тела движутся с общей скоростью.

Абсолютно упругий удар (близкий к нему) возникает при столкновении тел из упругих материалов (сталь, слоновая кость и др.0, форма которых после прекращения действия внешней силы полностью (или почти полностью) восстанавливается. При упругом ударе восстанавливается форма тел и величина их кинетической энергии. После удара тела движутся с разными скоростями, но сумма кинетических энергий тел до удара равна сумме кинетических энергий после удара. Прямая, совпадающая с нормалью к поверхности тел в точке их соприкосновения, называется линией удара. Удар называется центральным, если линия удара проходит через центры тяжести тел. Если векторы скоростей тел до удара лежали на линии удара, то удар называется прямым.

При соударении тел выполняются два закона сохранения.

1. Закон сохранения импульса.

В замкнутой системе (система, для которой результирующая всех внешних сил равна нулю) векторная сумма импульсов тел не изменяется, т.е. величина постоянная:

 

= = = const, (4.1)

где – полный импульс системы,

– импульс i –го тела системы.

 

2. Закон сохранения энергии

В замкнутой системе тел сумма кинетической, потенциальной и внутренней энергии остается величиной постоянной:

 

Wк + Wn + Q = const, (4.2)

 

где Wк – кинетическая энергия системы,

Wn – потенциальная энергия системы,

Q – энергия теплового движения молекул (тепловая энергия).

Простейшим случаем соударения тел является центральный удар двух шаров. Рассмотрим удар шаров массами mi и m2.

Скорости шаров до удара и после удара и . Для них законы сохранения импульса и энергии запишутся так:

, (4.3)

 

. (4.4)

Удар шаров характеризуется коэффициентом восстановления К, который определяется отношением относительной скорости шаров после удара к относительной скорости шаров до удара ., взятое по абсолютной величине т.е.

. (4.5)

Скорости первого шара относительно второго до и после удара равны:

, . (4.6)

Тогда коэффициент восстановления шаров равен:

. (4.7)

При абсолютно упругом ударе выполняется закон сохранения механической энергии, Q = 0, относительные скорости шаров до и после взаимодействия равны и коэффициент восстановления равен 1.

При абсолютно неупругом ударе механическая энергия системы не сохраняется, часть ее переходит во внутреннюю. Тела деформируются. После взаимодействия тела двигаются с одинаковой скоростью, т.е. их относительная скорость равна 0, поэтому коэффициент восстановления тоже равен нулю, К = 0. Закон сохранения импульса запишется в виде

, (4.8)

 

где – скорость тел после взаимодействия.

Закон сохранения энергии примет вид:

. (4.9)

Из уравнения (4.9) можно найти Q – механическую энергию, перешедшую во внутреннюю.

На практике предельные случаи взаимодействия осуществляются редко. Чаще взаимодействие носит промежуточный характер, и коэффициент восстановления К имеет значение:

0 £ К £ 1.

Чем ближе значение К к 1, тем меньше доля механической энергии, которая переходит во внутреннюю, тем с меньшей погрешностью удар можно отнести к разряду упругих. К упругим телам относятся, например, сталь, дерево, пластмасса. Коэффициент восстановления стальных шаров 0,8 – 0,9. К пластическим телам относятся глина, пластилин, воск и т.д., коэффициент восстановления для них близок к нулю.

Рассмотрим частный случай, когда массы шаров равны, т.е.

m1 = m2 = m.

Если до взаимодействия первый шар имел скорость V1, а второй был неподвижен (V2 = 0), то по закону сохранения импульса будем иметь:

(4.10)

или

. (4.11)

 

Из (4.7) для коэффициента восстановления К имеем:

К = . (4.12)

Решая совместно уравнения (4.11) и (4.12), получим:

, (4.13)

. (4.14)

 

В случае абсолютно упругого удара К = 1, тогда U1 = 0, а U2 = V1. Шары при ударе обменивается импульсами. При абсолютно неупругом ударе К = 0 и

. (4.15)

 



Последнее изменение этой страницы: 2016-07-23

headinsider.info. Все права принадлежат авторам данных материалов.