Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Причины применения выборочного наблюдения. Дескриптивная статистика и статистический вывод


В гл. 2 отмечалось, что статистика далеко не всегда оперирует данными сплошного наблюдения. Из всех видов несплошного наблюдения главным является выборочное наблюдение, так как только выборочный метод имеет статиста-ко-математическое обоснование распространения данных, полученных по выборке, на всю совокупность.

Причин использования выборочного метода несколько.

Во-первых, как это ни парадоксально, это повышение точности данных: уменьшение числа единиц наблюдения в выборке резко снижает ошибки регистрации. Правда, за счет неполноты охвата единиц возникает ошибка репрезентативности, т.е. представительности выборочных данных. Но даже взятые вместе ошибка наблюдения для выборки плюс ошибка репрезентативности обеспечивают большую точность выборочных данных по сравнению с массовым сплошным наблюдением.

При ограниченном объеме работ можно привлечь более квалифицированных исполнителей (интервьюеров, счетчиков-регистраторов). Это положительно сказывается на качестве данных выборочного обследования.

Во-вторых, обращение к выборкам обеспечивает экономию материальных, трудовых, финансовых ресурсов и времени. Например, для составления баланса денежных доходов и расходов населения, для изучения денежного обращения, выяв-

ления дифференциации населения по уровню жизни, определения черты бедности и т.д. необходимы данные о бюджетах домохозяйств. Сбор этих данных осуществляется государственной статистикой, но один статистик в состоянии курировать ежедневные записи доходов, расходов, потребления не более чем в 20—25 домохозяйствах. Если бы он решил собирать данные о бюджетах всех домохозяйств, то только для этой цели (не учитывая потребности последующей обработки) потребовалось бы примерно два миллиона статистиков. Так что использование выборочного наблюдения является единственным экономически выгодным решением, тем более что по результатам изучения сравнительно небольшой части можно получить с достаточно высокой степенью уверенности данные о всей совокупности. Подобная ситуация возникает при аудиторских проверках крупных фирм, когда вместо детального изучения каждого платежного документа ограничиваются анализом выборки документов, и в других областях применения статистики.

В-третьих, без выборки не обойтись, когда наблюдение связано с порчей наблюдаемых объектов. Это относится прежде всего к изучению качества продукции, которое основано на испытаниях образцов на вибрацию, упругость, разрыв и т.д. Всю продукцию, конечно же, таким испытаниям не подвергают, а только отобранные образцы. То же можно сказать об исследовании молока на жирность, зерна — на содержание белка, влажность, чистоту и всхожесть семян, электрических лампочек — на длительность горения и т.д. На выборках основаны маркетинговые исследования, оценки качества поставок.

Практика применения выборочного метода очень разнообразна. Иногда, проведя сплошное наблюдение, используют выборочный метод при разработке данных: отбирают часть данных для более подробной разработки по расширенной программе. Так поступают, например, при разработке данных переписи населения о составе и типах семей. Нередко в процессе сбора данных применяют совместно сплошное и несплошное наблюдение. При переписях населения в нашей стране (1959, 1970, 1979 гг.) собирались сведения о каждом лице по 11 признакам, а 25% населения давали более подробную информацию (18 вопросов).

 

 

Выборки используются при опросах общественного мнения, при выяснении потребительских предпочтений, формировании доходов и расходов населения, при определении урожайности сельскохозяйственных культур и продуктивности скота. С 20-х гг. XX в. выборочный метод стал использоваться для контроля и анализа качества продукции. Сейчас методы статистической выборки все шире внедряются в самые различные области. В 1994 г. в Российской Федерации была проведена 5%-ная микроперепись населения с целью уточнения демографического и социального состава населения, уровня благосостояния, включая жилищные условия, источники дохода и др. Эта микроперепись была положена в основу новой бюджетной выборки, созданной в 1996 г. на период до 2003 г., после чего она должна быть пересмотрена на основе данных Всероссийской переписи населения 2002 г.

Та совокупность, из которой проводится отбор, называется генеральной совокупностью; отобранные данные составляют выборочную совокупность. Эти данные представляют интерес, поскольку дают основание для суждений о параметрах и свойствах генеральной совокупности.

Таким образом, выборочный метод обладает следующими достоинствами:

  • относительно небольшие (по сравнению со сплошным наблюдением) материальные, трудовые и стоимостные затраты на сбор данных (включая затраты на планирование и формирование выборки);
  • оперативность получения результатов;
  • широкая область применения;
  • высокая достоверность результатов.

 

Все эти достоинства проявляются лишь при условии правильного решения проблем выборочного обследования. К ним относятся:

1) определение границ генеральной совокупности;

2) разработка программы наблюдения и инструкций;

3) определение основы для проведения выборки — списка единиц генеральной совокупности, сведений об их размещении и т.д.;

4) установление допустимого размера погрешности и определение объема выборки;

5) определение вида выборочного наблюдения;

 

6) установление сроков проведения наблюдения;

7) определение потребности в кадрах для проведения выборочного наблюдения, их подготовка;

8) оценка точности и достоверности данных выборки, определение порядка их распространения на генеральную совокупность.

 

Представление о статистических данных, как о выборочных, может относиться не только к собственно выборке, но и к данным сплошного наблюдения, которые иногда рассматриваются как выборка из всех возможных реализаций изучаемого процесса. Это имеет смысл в случае мапого числа единиц совокупности. Кроме того, трактовка данных как выборочных используется применительно к результатам эксперимента, которые рассматриваются как некая выборка из потенциально бесконечного числа повторений экспериментальных наблюдений.

Трактовка данных как выборочных является основой деления статистики на описательную (дескриптивную) и выводную.

Методы описательной статистики включают сбор данных по всем единицам изучаемой совокупности, их обработку, получение сводных показателей, которые характеризуют только наблюдаемую совокупность. Например, если наша задача состоит в изучении успеваемости группы студентов, включающей 25 человек, то вычисленный средний балл по этой группе, процент отличных оценок и т.д. являются описаниями данной совокупности. Если же мы будем рассматривать эту группу студентов с точки зрения оценки успеваемости всех студентов данного колледжа или университета, то эта группа предстанет как выборка из общего числа студентов. В таком случае средний балл для группы будет являться оценкой средней успеваемости студентов колледжа в целом.

Генеральная совокупность может быть реальной, а может быть гипотетической, включающей случаи, которые реально не существуют, например, все возможные результаты эксперимента.

В выводной статистике принято строго различать параметры и свойства генеральной совокупности и их оценки по данным выборки. С этой целью принята следующая система обозначений: генеральные параметры обозначаются греческими буквами, выборочные показатели, которые рассматри-

ваются как оценки генеральных параметров, — латинскими

буквами:

Подводя итоги, можно сказать, что описательная статистика является инструментом описания совокупности, по которой у нас полностью имеются исходные данные.

Метод статистического вывода позволяет по данным выборок делать заключение о большей совокупности, по которой мы не имеем исчерпывающих наблюдений.



Последнее изменение этой страницы: 2016-07-28

headinsider.info. Все права принадлежат авторам данных материалов.