Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Аналогово-цифровые преобразователи (АЦП)


Вышеописанный процесс оцифровки звука выполняется аналогово-цифровыми преобразователями (АЦП).
Это преобразование включает в себя следующие операции:

1. Ограничение полосы частот производится при помощи фильтра нижних частот для подавления спектральных компонент, частота которых превышает половину частоты дискретизации.

2. Дискретизацию во времени, то есть замену непрерывного аналогового сигнала последовательностью его значений в дискретные моменты времени — отсчетов. Эта задача решается путём использования специальной схемы на входе АЦП — устройства выборки-хранения.

3. Квантование по уровню представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин — уровней квантования.

4. Кодирование или оцифровку, в результате которого значение каждого квантованного отсчета представляется в виде числа, соответствующего порядковому номеру уровня квантования.

Делается это следующим образом: непрерывный аналоговый сигнал «режется» на участки, с частотой дискретизации, получается цифровой дискретный сигнал, который проходит процесс квантования с определенной разрядностью, а затем кодируется, то есть заменяется последовательностью кодовых символов. Для записи звука в полосе частот 20-20 000 Гц, требуется частота дискретизации от 44,1 и выше (в настоящее время появились АЦП и ЦАП c частотой дискретизации 192 и даже 384 кГц). Для получения качественной записи достаточно разрядности 16 бит, однако для расширения динамического диапазона и повышения качества звукозаписи используется разрядность 24 (реже 32) бита.

Кодирование оцифрованного звука перед его записью на носитель

Для хранения цифрового звука существует много различных способов. Оцифрованный звук являет собой набор значений амплитуды сигнала, взятых через определенные промежутки времени.

· Блок оцифрованной аудио информации можно записать в файл без изменений, то есть последовательностью чисел - значений амплитуды. В этом случае существуют два способа хранения информации.

· Первый - PCM (Pulse Code Modulation - импульсно-кодовая модуляция) - способ цифрового кодирования сигнала при помощи записи абсолютных значений амплитуд. (В таком виде записаны данные на всех аудио CD.)

· Второй - ADPCM (Adaptive Delta PCM - адаптивная относительная импульсно-кодовая модуляция) – запись значений сигнала не в абсолютных, а в относительных изменениях амплитуд (приращениях).

· Можно сжать данные так, чтобы они занимали меньший объем памяти, нежели в исходном состоянии. Тут тоже есть два способа.

· Кодирование данных без потерь (lossless coding) - способ кодирования аудио, который позволяет осуществлять стопроцентное восстановление данных из сжатого потока. К нему прибегают в тех случаях, когда сохранение оригинального качества данных особо значимо. Существующие сегодня алгоритмы кодирования без потерь (например, Monkeys Audio) позволяют сократить занимаемый данными объем на 20-50%, но при этом обеспечить стопроцентное восстановление оригинальных данных из полученных после сжатия.

· Кодирование данных с потерями (lossy coding). Здесь цель - добиться схожести звучания восстановленного сигнала с оригиналом при как можно меньшем размере сжатого файла. Это достигается путем использования алгоритмов, «упрощающих» оригинальный сигнал (удаляющих из него «несущественные», неразличимые на слух детали). Это приводит к тому, что декодированный сигнал перестает быть идентичным оригиналу, а является лишь «похоже звучащим». Методов сжатия, а также программ, реализующих эти методы, существует много. Наиболее известными являются MPEG-1 Layer I,II,III (последним является всем известный MP3), MPEG-2 AAC (advanced audio coding), Ogg Vorbis, Windows Media Audio (WMA), TwinVQ (VQF), MPEGPlus, TAC, и прочие. В среднем, коэффициент сжатия, обеспечиваемый такими кодерами, находится в пределах 10-14 (раз). В основе всех lossy-кодеров лежит использование так называемой психоакустической модели. Она занимается этим самым «упрощением» оригинального сигнала. Степень сжатия оригинального сигнала зависит от степени его «упрощения» - сильное сжатие достигается путем «воинственного упрощения» (когда кодером игнорируются множественные нюансы). Такое сжатие приводит к сильной потере качества, поскольку удалению могут подлежать не только незаметные, но и значимые детали звучания[4].

Терминология

· кодер – программа (или устройство), реализующая определенный алгоритм кодирования данных (например, архиватор, или кодер MP 3), которая в качестве ввода принимает исходную информацию, а в качестве вывода возвращает закодированную информацию в определенном формате.

· декодер – программа (или устройство), реализующая обратное преобразование закодированного сигнала в декодированный.

· кодек (от англ. « codec » - « Coder / Decoder ») - программный или аппаратный блок, предназначенный для кодирования/декодирования данных.

 

 

14 вопрос: Системы счисления .Позиционные и непозиционные системы счисления. Запись чисел в позиционной системе счисления.

 

Ответ:

Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

· даёт представления множества чисел (целых и/или вещественных);

· даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);

· отражает алгебраическую и арифметическую структуру чисел.

Системы счисления подразделяются на позиционные, непозиционные и смешанные.

 

Позиционные системы счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается -ричная система счисления, которая определяется целым числом , называемым основанием системы счисления. Целое число без знака в -ричной системе счисления представляется в виде конечной линейной комбинации степеней числа :

, где — это целые числа, называемые цифрами, удовлетворяющие неравенству .

Каждая степень в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя (номером разряда). Обычно, в ненулевых числах , левые нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

Например, число сто три представляется в десятичной системе счисления в виде:

Наиболее употребляемыми в настоящее время позиционными системами являются:

· 2 — двоичная (в дискретной математике, информатике, программировании);

· 3 — троичная;

· 8 — восьмеричная;

· 10 — десятичная (используется повсеместно);

· 12 — двенадцатеричная (счёт дюжинами);

· 13 — тринадцатеричная;

· 16 — шестнадцатеричная (используется в программировании, информатике);

· 60 — шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.



Последнее изменение этой страницы: 2016-08-11

headinsider.info. Все права принадлежат авторам данных материалов.