Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Признаки сходимости несобственных интегралов 1 рода


Теорема(первый признак сравнения). Пусть f(x), g(x) - непрерывны при x>a, причем $0<f(x)a$. Тогда</f(x)

1. Если интеграл

∫+∞ag(x)dx

сходится, то сходится и интеграл

∫+∞af(x)dx.

2. Если интеграл

∫+∞af(x)dx

расходится, то расходится и интеграл

∫+∞ag(x)dx.

Теорема(второй признак сравнения). Пусть f(x), g(x) - непрерывны и положительны при x>a, причем существует конечный предел

θ=limx→+∞f(x)g(x),θ≠0,+∞.

Тогда интегралы

∫+∞af(x)dx,∫+∞ag(x)dx

сходятся или расходятся одновременно.

 

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА. ОБЩЕЕ И ЧАСТНОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 1-ГО ПОРЯДКА. ТЕОРЕМА КОШИ (БЕЗ ДОКАЗАТЕЛЬСТВА).

 

Обыкновенное дифференциальное уравнение 1-го порядка (n=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решениеy=y(x,С) или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.

Теорема 2.1. Если в уравнении функция и ее частная производная непрерывны в некоторой областиD плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .

Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскостиXOY поле направлений касательных к интегральным кривым.

Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .

 

 

12. Дифференциальные уравнения 1-го порядка с разделяющимися переменными.

 

Определение. Дифференциальным уравнением с разделяющимися переменными называется уравнение вида (3.1)

или уравнение вида (3.2)

Для того, чтобы в уравнении (3.1) разделить переменные, т.е. привести это уравнение к так называемому уравнению с разделенными переменными, произвести следующие действия:

;

Теперь надо решить уравнение g(y)= 0. Если оно имеет вещественное решение y=a, тоy=aтоже будет решением уравнения (3.1).

Уравнение (3.2) приводится к уравнению с разделенными переменными делением на произведение :

, что позволяет получить общий интеграл уравнения (3.2): . (3.3)

Интегральные кривые (3.3) будут дополнены решениями , если такие решения существуют.

Пример.

Решить уравнение: .

Решение.

Разделяем переменные:

.

Интегрируя, получаем

Далее из уравнений и находимx=1, y=-1. Эти решения – частные решения.

 

Вопрос 13 Линейные дифференциальные уравнения 1-го порядка. етод
вариации постоянной. Уравнение Бернулли.

Метод вариации произвольной постоянной, или метод Лагранжа — еще один способ решения линейных дифференциальных уравнений первого порядка и уравнения Бернулли.

Линейные дифференциальные уравнения первого порядка — это уравнения вида y’+p(x)y=q(x). Если в правой части стоит нуль: y’+p(x)y=0, то это — линейное однородное уравнение 1го порядка. Соответственно, уравнение с ненулевой правой частью, y’+p(x)y=q(x), — неоднородное линейное уравнение 1го порядка.

Метод вариации произвольной постоянной (метод Лагранжа)состоит в следующем:

1) Ищем общее решение однородного уравнения y’+p(x)y=0: y=y*.

2) В общем решении С считаем не константой, а функцией от икса: С=С(x). Находим производную общего решения (y*)’ и в первоначальное условие подставляем полученное выражение для y* и (y*)’. Из полученного уравнения находим функцию С(x).

3) В общее решение однородного уравнения вместо С подставляем найденное выражение С(x).

Вопрос14. . Дифференциальные уравнения 2-го порядка. Общее и частное решение дифференциального уравнения 2-го порядка. Теорема Коши (без доказательства); ее геометрический смысл.

Дифференциальное уравнение 2-го порядка имеет вид:

. (1.1)

Общим решением уравнения является семейство функций, зависящее от двух произвольных постоянных и : (или – общий интеграл дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1.1) состоит в отыскании частного решения уравнения, удовлетворяющего начальным условиям: при : , . Необходимо заметить, что графики решений уравнения 2-го порядка могут пересекаться в отличие от графиков решений уравнения 1-го порядка. Однако решение задачи Коши для уравнений 2-го порядка (1.1) при довольно широких предположениях для функций, входящих в уравнение, единственно, т.е. всякие два решения с общим начальным условием , совпадают на пересечении интервалов определения

Получить общее решение или решить задачу Коши для дифференциального уравнения 2-го порядка аналитически удается далеко не всегда. Однако в некоторых случаях удается понизить порядок уравнения с помощью введения различных подстановок. Разберем эти случаи.

1. Уравнения, не содержащие явно независимой переменной .

Пусть дифференциальное уравнение 2-го порядка имеет вид: , т.е. в уравнении (1.1) явно не присутствует независимая переменная . Это позволяет принять за новый аргумент, а производную 1-го порядка принять за новую функцию . Тогда .

Таким образом, уравнение 2-го порядка для функции , не содержащее явно , свелось к уравнению 1-го порядка для функции . Интегрируя это уравнение, получаем общий интеграл или , а это есть дифференциальное уравнение 1-го порядка для функции . Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: .

2. Уравнения, не содержащие явно искомой функции .

Пусть дифференциальное уравнение 2-го порядка имеет вид: , т.е. в уравнение явно не входит искомая функция . В этом случае вводят постановку . Тогда и уравнение 2-го порядка для функции переходит в уравнение 1-го порядка для функции . Проинтегрировав его, получаем дифференциальное уравнение 1-го порядка для функции : . Решая последнее уравнение, получаем общий интеграл заданного дифференциального уравнения , зависящий от двух произвольных постоянных: .



Последнее изменение этой страницы: 2016-06-08

headinsider.info. Все права принадлежат авторам данных материалов.