Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Парные, частные и множественные коэффициенты корреляции


Парные коэффициенты корреляции. Для измерения тесноты связи между двумя из рассматриваемых переменных (без учета их взаимодействия с другими переменными) применяются парные коэффициенты корреляции. Методика расчета таких коэффициентов и их интерпретации аналогичны линейному коэффициенту корреляции в случае однофакторной связи.

где - среднее квадратическое отклонение факторного признака;

- среднее квадратическое отклонение результативного признака.

 

Коэффициент частной корреляцииизмеряет тесноту линейной связи между отдельным фактором и результатом при устранении воздействия прочих факторов модели.

Для расчета частных коэффициентов корреляции мо­гут быть использованы парные коэффициенты корреляции.

Для случая зависимости Yот двух факторов можно вычислить 2 коэффициента частной корреляции:

(2-ой фактор фиксирован);

 

(1-ый фактор фиксирован).

 

Это коэффициенты частной корреляции 1-ого порядка (порядок определяется числом факторов, влияние которых на результат устраняется).

Частные коэффициенты корреляции, рассчитанные по таким формулам изменяются от -1 до +1. Они используют­ся не только для ранжирования факторов модели по степени влияния на результат, но и также для отсева факторов. При малых значениях нет смысла вводить в уравнение m-ый фактор, т.к. качество уравнения регрессии при его введении возрастет незначительно (т.е. теоретиче­ский коэффициент детерминации увеличится незначитель­но).

 

Коэффициент множественной корреляции (R) характеризует тесноту связи между результативным показателем и набором фактор­ных показателей:

где σ2 — общая дисперсия эмпирического ряда, характеризующая общую вариацию результативного показателя (у) за счет факторов;

σост2 — остаточная дисперсия в ряду у, отражающая влияния всех факто­ров, кроме х;

у — среднее значение результативного показателя, вычисленное по ис­ходным наблюдениям;

s — среднее значение результативного показателя, вычисленное по уравнению регрессии.

Коэффициент множественной корреляции принимает только поло­жительные значения в пределах от 0 до 1. Чем ближе значение коэффи­циента к 1, тем больше теснота связи.

 

Выявление значимости связей.

Исследуя зависимости между признаками, необходимо выделить два типа связей:

— функциональные – характеризуются полным соответствием между изменением факторного признака и изменением результативной величины: определенному значению признака-фактора соответствует одно и только одно значение результативного признака. Функциональная зависимость может связывать результативный признак с одним или несколькими факторными признаками. Зная величину факторного признака, можно точно определить величину результативного признака. Например, величина заработной платы напрямую зависит от количества отработанных часов;

— корреляционные – между изменением двух признаков нет полного соответствия, воздействие отдельных факторов проявляется лишь в среднем, при массовом наблюдении фактических данных. Одновременное воздействие на изучаемый признак большого количества самых разнообразных факторов приводит к тому, что одному и тому же значению признака-фактора соответствует целое распределение значений результативного признака, т.к. в каждом конкретном случае прочие факторные признаки могут изменять силу и направленность своего воздействия. Таким образом, при корреляционной связи изменение среднего значения результативного признака обусловлено изменением факторных признаков. Корреляционная связь является частным случаем стохастической, при которой причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем, при большом числе наблюдений.

Изучая взаимосвязи между признаками, их классифицируют по направлению, форме и числу факторов:

— по направлению связи делятся на прямые и обратные. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора. Например, чем выше квалификация рабочего, тем выше его производительность труда. При обратной связи направление изменения результативного признака противоположно направлению изменения признака-фактора.

— по форме (виду функции, по аналитическому выражению) связи делят на линейные (прямая линия) и нелинейные (параболическая, гиперболическая и т.д.). При линейной связи с возрастанием значения факторного признака происходит равномерное возрастание (убывание) значения результативного признака;

— по количеству факторов, действующих на результативный признак, связи делят на однофакторные (парные) и многофакторные.

Содержание теории корреляции составляет изучение зависимости вариации признака от окружающих условий. Корреляционный анализ решает следующие задачи:

Отбор факторов, оказывающих наиболее существенное влияние на результативный признак, на основании измерения тесноты связи между ними.

Обнаружение ранее неизвестных причинных связей.

Установление численных значений причинных связей между параметрами и достоверности суждений об их наличии.

Основная задача корреляционного анализа – выявление взаимосвязи между случайными переменными путем точечной и интервальной оценки парных (частных) коэффициентов корреляции, вычисление и проверка значимости множественных коэффициентов корреляции и детерминации.

При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:

Doбщ. = Dфакт + D ост.,

Doбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;

Dфакт - факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков — наблюдается межгрупповое разнообразие.

D ост. - остаточная (внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неуточненных факторов и не зависящую от признака — фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем), так и от случайных (неизвестных) факторов.

Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемыми факториальной вариацией и неорганизованными факторами, т.е. остаточной вариацией (случайной, неизвестной).



Последнее изменение этой страницы: 2016-06-09

headinsider.info. Все права принадлежат авторам данных материалов.