Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Статистическая методология и этапы статистического исследования.


Статистическая методология – система приемов, способов и методов, направленных на изучение количественных закономерностей, которые проявляются в структуре, динамике и взаимосвязях социально-экономических явлений. Методология является основой статистического исследования.

Этапы статистического исследования:

1. статистическое наблюдение, или сбор информации;

2. сводка и группировка результатов статистического наблюдения, или обработка информации;

3. анализ полученной информации.

Статистическое наблюдение – это массовое, планомерное, научно-организованное наблюдение за явлениями социальной и экономической жизни, которое заключается в регистрации отобранных признаков у каждой единицы совокупности.

Процесс проведения статистического наблюдения включает следующие этапы:

1) подготовка наблюдения;

2) проведение массового сбора данных;

3) подготовка данных к автоматизированной обработке;

4) разработка предложений по совершенствованию статистического наблюдения.

Сводка – комплекс последовательных операций по обобщению данных статистического наблюдения для характеристики статистической совокупности в целом и отдельных ее частей (подсчет промежуточных и общих итогов). Группировка – разграничение общей статистической совокупности на группы качественно однородных единиц. Результаты статистической сводки и группировки излагаются в виде статистических таблиц.

Анализ или исследование сущности изучаемых явлений, исследует структуру, динамику и взаимосвязи общественных явлений и процессов.

Имеет следующие этапы:

1) констатация фактов и их оценка;

2) установление характерных черт и причин каждого явления;

3) сопоставление одного явления с другими (в том числе с эталоном);

4) формулирование гипотез, выводов и предложений.

5) Статистическая проверка выдвинутых гипотез с помощью специальных статистических показателей

38.Статистические методы прогнозирования на основе показателей ряда динамики. Процесс прогнозирования, опирающийся на статистические методы, распадается на два этапа. Первый, индуктивный, заключается в обобщении данных, наблюдаемых за более или менее продолжительный период времени, и в представлении соответствующих статистических закономерностей в виде модели. Статистическую модель получают или в виде аналитически выраженной тенденции развития, или же в виде уравнения зависимости от одного или нескольких факторов-аргументов. В ряде случаев – при изучении сложных комплексов экономических показателей – прибегают к разработке так называемых взаимозависимых систем уравнений, состоящих в основном опять-таки из уравнений, характеризующих статистические зависимости. Процесс построения и применения статистической модели для прогнозирования, какой бы вид последняя не имела, обязательно включает выбор формы уравнения, описывающего динамику или взаимосвязь явлений, и оценивание его параметров с помощью того или иного метода. Второй этап, собственно прогноз, является дедуктивным. На этом этапе на основе найденных статистических закономерностей определяют ожидаемое значение прогнозируемого признака.

Следует подчеркнуть, что полученные результаты не могут рассматриваться как нечто окончательное. При их оценке и использовании должны приниматься во внимание факторы, условия или ограничения, которые не были учтены при разработке статистической модели, должна осуществляться корректировка обнаруженных статистических характеристик в соответствии с ожидаемым изменением обстоятельств их формирования. Короче говоря, найденные с помощью статистических методов прогностические оценки являются важным материалом, который, однако, должен быть критически осмыслен. При этом главным является учет возможных изменений в самих тенденциях развития экономических явлений и объектов

39.Статистические таблицы, их виды, составные элементы и правила построения таблиц. Статистическая таблица - форма наиболее рационального изложения полученных в результате статистической сводки и группировки числовых (цифровых) данных. По внешнему виду она представляет собой комбинацию вертикальных и горизонтальных строк, содержащую боковые и верхние заголовки. Статистическая таблица содержит подлежащее и сказуемое.

Подлежащее таблицы представляет ту статистическую совокупность, о которой идет речь в таблице, т. е. перечень отдельных или всех единиц совокупности либо их групп. Чаще всего подлежащее помещается в левой части таблицы и содержит перечень строк.

41.СТРУКТУРНАЯ СРЕДНЯЯ МОДА И ЕЕ ОПРЕДЕЛЕНИЕ. Величина средней определяется всеми значениями признака, встречающимися в данном ряду распределения. Различают такие структурные средние, как: (1) мода (2) медиана (3) квартиль (4) дециль (5) перцентиль Мода — это наиболее часто встречающийся вариант ряда. Мода применяется, например, при определении размера одежды, обуви, пользующейся наибольшим спросом у покупателей. Модой для дискретного ряда является варианта, обладающая наибольшей частотой. При вычислении моды для интервального вариационного ряда необходимо сначала определить модальный интервал (по максимальной частоте), а затем — значение модальной величины признака по формуле: где:
  • — значение моды
  • — нижняя граница модального интервала
  • — величина интервала
  • — частота модального интервала
  • — частота интервала, предшествующего модальному

Сказуемое таблицы - показатели, с помощью которых дается характеристика явления, отображаемого в таблице.

Если в подлежащем таблицы содержится простой перечень каких-либо объектов, таблица называется простой. В подлежащем простой таблицы нет каких-либо группировок статистических данных. Если подлежащее простой таблицы содержит перечень территорий, то такая таблица называется территориальной.

Простая таблица содержит только описательные сведения, ее аналитические возможности ограничены. Глубокий анализ исследуемой совокупности, взаимосвязей признаков предполагает построение более сложных таблиц - групповых и комбинационных.

Групповые таблицы содержат в подлежащем группировку единиц объекта наблюдения по одному существенному признаку. Простейшим видом групповой таблицы являются таблицы, в которых представлены ряды распределения. Групповая таблица может быть более сложной, если в сказуемом приводится не только число единиц в каждой группе, но и ряд других важных показателей, количественно и качественно характеризующих группы подлежащего. Такие таблицы часто используются в целях сопоставления обобщающих показателей по группам, что позволяет сделать определенные практические выводы.

Комбинационными называются статистические таблицы, е подлежащей которых группы единиц, образованные по одному признаку, подразделяются на подгруппы по одному или нескольким признакам. В отличие от простых и групповых таблиц, комбинационные позволяют проследить зависимость показателей сказуемого от нескольких признаков, которые легли в основу комбинационной группировки в подлежащем.

Основные правила построения статистических таблиц:

1) в заголовке должны быть отражены объект, признак, время и место совершения события;

2) графы и строки следует нумеровать;

3) графы и строки должны содержать единицы измерения;

4) сопоставляемую в ходе анализа информацию располагают в соседних графах (либо одну под другой);

5) числа в таблице проставляют в середине граф, строго одно под другим; числа целесообразно округлять с одинаковой степенью точности;

6) отсутствие данных обозначается знаком умножения (•), если данная позиция не подлежит заполнению, отсутствие сведений обозначается многоточием (...), либо н.д., либо н. св., при отсутствии явления ставится знак тире (-);

7) для отображения очень малых чисел используют обозначение 0.0 или 0.00; если число получено на основании условных расчетов, то его берут в скобки, сомнительные числа сопровождают вопросительным знаком, а предварительные - знаком (*).

40.Структурная средняя медиана и ее определение. Медиана- это численное значение признака у той единицы совокупности, которая находится в середине ранжированного ряда (построенного в порядке возрастания, либо убывания значений изучаемого признака). Медиану иногда называют серединной вариантой, т.к. она делит совокупность на две равные части таким образом, чтобы по обе ее стороны находилось одинаковое число единиц совокупности. Если всем единицам ряда присвоить порядковые номера, то порядковый номер медианы будет определяться по формуле (n+1):2 для рядов, где n – нечетное. Если же ряд с четным числом единиц, то медианой будет являться среднее значение между двумя соседними вариантами, определенными по формуле: n:2, (n+1):2, (n:2)+1.

В дискретных вариационных рядах с нечетным числом единиц совокупности – это конкретное численное значение в середине ряда.

Нахождение медианы в интервальных вариационных рядах требует предварительного определения интервала, в котором находится медиана, т.е. медианногоинтервала – этот интервал характеризуется тем, что его кумулятивная (накопленная) частота равна полусумме или превышает полусумму всех частот ряда.

XMe -нижняя граница медианного интервала

hMe -величина медианного интервала;

SMe-1-сумма накопленных частот интервала, предшествующего медианному интервалу;

  • fMe -локальная частота медианного интервала.

— частота интервала, следующего за модальным

42.Сущность и значение графиков, их основные элементы. В статистике графиком называют наглядное изображение статистических величин и их соотношений при помощи геометрических точек, линий, фигур или географических картосхем.

Графики придают изложению статистических данных большую наглядность, чем таблицы, выразительность, облегчают их восприятие и анализ. Позволяет зрительно оценить характер изучаемого явления, присущие ему закономерности, тенденции развития, взаимосвязи с другими показателями, географическое разрешение изучаемых явлений. Еще в древности китайцы говорили, что одно изображение заменяет тысячу слов.При любой возможности анализ статистических данных рекомендуется всегда начинать с их графического изображения. График позволяет сразу получить общее представление обо всей совокупности статистических показателей. Графический метод анализа выступает как логическое продолжение табличного метода и служит целям получения обобщающих статистических характеристик процессов, свойственных массовым явлениям.
При помощи графического изображения стат.данных решаютсязадачистат.исследования:

1) наглядное представление величины показателей (явлений) в сравнении друг с другом;

2) характеристика структуры какого-либо явления;

3) изменение явления во времени;

4) ход выполнения плана;

5) зависимость изменения одного явления от изменения другого;

6) распространенность или размещение каких-либо величин по территории

В каждом графике выделяют (различают) следующие основные элементы:

  • 1) пространственные ориентиры (систему координат);
  • 2) графический образ;
  • 3) поле графика;
  • 4) масштабные ориентиры;
  • 5) экспликация графика;
  • 6) наименование графика

43.Сущность и значение средних величин. Средняя величина – обобщенная характеристика уровня значений признака, полученная в расчете на единицу совокупности. Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средние величины бывают общими(отражают совокупность в целом) и групповыми( отражают особенность по группам). Делятся на 2 категории – степенные и структурные.

К степенным относятся – средняя гармоническая, средняя геометрическая, средняя арифметическая, средняя квадратическая. Самая распространенная – ср.арифметическая. Ср.гармоническую используют как обратную ср.арифметической. Ср.квадратическая используется при расчете показателей вариации, ср.геометрическая – при анализе динамики.

К структурным относятся – мода и медиана. Мода – значение изучаемого признака с наибольшей частотой. Медиана – значение признака, приходящее на середину ранжированного ряда. Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен. В дискретном ряду мода — это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту. Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних. Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал.



Последнее изменение этой страницы: 2016-06-10

headinsider.info. Все права принадлежат авторам данных материалов.