Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Элювиальные процессы и их изменения при с/х использовании земель.


Оподзоливание – процесс разрушения минералов кислотами в условиях промывного водного режима и выноса продуктов разрушения в нижележащие горизонты и грунтовые воды. Наиболее интенсивно выносятся щелочные и щелочноземельные катионы. Значительная часть освобождающихся соединений железа и алюминия осаждается в иллювиальном горизонте.

Лессиваж – процесс перемещения глинистых частиц без разрушения под действием нисходящих токов влаги. В «чистом» виде лессиваж – сбалансированный элювиально-иллювиальный процесс: вынос ила из элювиальных горизонтов соответствует его накоплению в иллюв горизонтах. В последних фиксируется ориентированная глина – глинистые частицы, расположенные по направлению вертикальных ходов, пор, трещин. Важный признак – однородность валового состава илистой фракции по профилю почвы.

Элювиально-глеевый процесс – формирование осветленного элювиального горизонта при сочетании временного поверхностного переувлажнения и оглеения с промыванием и выносом продуктов разрушения, или сегрегацией. Для предотвращения необходимы улучшение дренированности и известкование.

Альфегумусовый процесс – мобилизация железа и алюминия минеральных пленок кислыми гумусовыми веществами с выносом аморфных оксидов алюминия и железа вместе с гумусом.

Осолодение – разрушение минеральной части почвы щелочными р-рами с накоплением остаточного аморфного кремнезема. Обменный натрий вытесняется протоном , в результате чего в элювиальной части профиля (гор А1 и А2) отмечается кислая реакция, а в иллювиальной – щелочная. Процесс осолодения часто развивается при орошении почв, содержащих обменный натрий, и приводит, в частности, к резкому увеличению подвижности орг в-ва и его потерям в ходе нисходящей миграции, к ухудшению водно-физических свойств почв. Преодоление осолодения связано не только с регулированием водного режима, но и с вытеснением из ППК натрия и водорода кальцием мелиорантов.

 

 

71. Основные представления об экологии. Базовые экологические понятия и термины. Законы экологии.

Экология - наука о взаимодействии организмов между собой и с окр средой (Ойкос – др гр – место пребывания человека). В сер 20 в наука о биосфере и экосистемах. Экосистема и биосфера – высшие уровни организации живого на Земле, способны к саморегуляции, т е к самосохранению, поддержанию видового состава, воспроизведению связей между отдельными видами. Осн понятия – антропогенная среда природная среда, измененная человеком, среда обитания – часть природной среды, окружающая живые организмы, с которой они взаимодействуют, экологический фактор – элемент окружающей среды, положительно или отрицательно воздействующий на живые организмы, который при своем изменении вызывает у организмов ответные приспособительные эколого-физиологические изменения, наследственно закрепляющиеся в процессе эволюции,окружающая среда – вещество, энергия и пространство, окружающие живые организмы и воздействующие на них, природная среда – совокупность природных абиотических и биотических факторов по отношению живых организмов независимо от контактов с человеком. Законы: Барри Коммонер – 1966 г: все связано со всем, все должно куда-то деваться, ничто не дается даром, природа знает лучше . Закон оптимума - любой экологический фактор имеет пределы положительного влияния на живые организмы. Закон экологической индивидуальности видов - был сформулирован в 1924 г. русским ботаником Л.Г. Раменским: экологические спектры (толерантность) разных видов не совпадает, каждый вид специфичен по своим экологическим возможностям. Закон лимитирующего фактора - наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения. Закон был установлен в 1905 г. английским ученым Блеккером. Закон неоднозначного действия - действие каждого экологического фактора неоднозначно на разных стадиях развития организма – для головастика вода нужна, для лягушки нет. Закон взаимодействия экологических факторов - оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору могут смещаться в зависимости от того, в сочетании с какими другими факторами осуществляется воздействие, учитывается в сх для поддержания оптимальных условий жизнедеятельности культурных растений - при угрозе заморозков на почве в ср полосе в мае растения обильно поливают.

(1866-1903 – анализ окружающей среды химическими, физическими и биологическими методами, 1904-1958 – анализ экологии отдельных видов животных и растений, 1959 – 1974 – изучение экосистем, 1975 – настоящее время – профилизация. Парадигма – пример, образец – система понятий, выражающая черты действительности или модель постановки постановки проблем и их решения. Три экологических парадигмы – аутэкологическая – условия среды определяют встречаемость и жизнедеятельность организмов, синэкологическая – взаимодействие организмов и популяций определяет встречаемость и жизнедеятельность организмов, системная – организмы и окружающая среда образуют экосистему в которой организмы влияют на среду, а среда на организмы. На современном этапе - варианты системной парадигмы – компонентный – компоненты биоценоза или биосферы, биогеоценотический – взаимодействие между собой и друг с другом, геоструктурный – природные компоненты в системной связи друг с другом и с человеческим обществом и с космической средой, биоцентрический – биотическая авторегуляция, как механизм состояния и саморазвития биотического комплекса, антропоцентрический – человек и общество составная часть биосферы). Две основные особенности системной парадигмы экологии по Соловьеву В.А. – единый подход к изучению природных комплексов и применение математических методов к экологическим объектам. Современный этап – биоэкология – взаимоотношения живых систем, геоэкология – динамика и взаимодействие геосфер, прикладная – принципы охраны природы.

 

67. Ключевые задачи и объекты экологии. Современные представления о структуре экологии. Особенности биоэкологии и агроэкологии.

Экология является теоретической базой охраны природы и изучает различные закономерности и законы при взаимодействии организмов и окружающей среды. Структура экологии:

1) Аутэкология изучает экологию особей, то есть взаимодействие организмов с окружающей средой

2) Демэкология - экология популяций, их взаимоотношение с окружающей средой

3) Синэкология - экология сообществ, их взаимоотношение с окружающей средой

4) Экосистемная экология - изучает взаимоотношение сообществ с абиотической внешней средой.

Основные задачи экологии:

1) Разработка теорий функционирования систем

2) Оценка воздействия на структурно-функциональную организацию и динамику систем (всех иерархических уровней) внешних факторов, в том числе и антропогенных

3) Разработка теоретических основ конструирования устойчивых биогеоценозов с использованием моделирования и компьютеров

4) Разработка системы естественных тестов-индикаторов и критериев к наблюдениям за состоянием ЭС

5) Управление природными ресурсами

Объектами исследования экологии: являются биологические макросистемы (популяции, биоценозы) и их динамика во времени и пространстве. Биоэкология – отношение живых организмов между собой и окружающей средой. Агроэкология – взаимодействие человека с окружающей средой в процессе сх производства, влияние сх на природные комплексы и их компоненты, взаимодействие компонентов агроэкосистем и круговорот веществ в них, перенос энергии и функционирование в условиях техногенных нагрузок.

 

62. Взаимодействие экологии, почвоведения и агрохимии. Экологическое почвоведение. Экологические основы агрохимии.

(Экология почв или интегральная экология почв - междисциплинарное научное направление, изучающее весь спектр участия различных факторов почвообразования в формировании, динамике и эволюции почв и всю совокупность экологических функций почв с ответным воздействием на почвообразователи и поддержанием их функционирования и развития. А также разрабатываемое на их основе учение о сохранении почв. Основные направления и задачи экологии почв - работы по биогеоценотическим и глобальным функциям почв, имеющие принципиальное значение не только для дальнейшего развития науки о почве, но и для всесторонней разработки учения о взаимосвязи и динамике приповерхностных геосфер, а также создания научно обоснованной системы рационального использования и охраны природных ресурсов. Анализ функций почв в экосистемах и биосфере позволяет поставить исследования взаимодействий почв и факторов среды в качестве особой проблемы и вести ее разработку на уровне изучения не только прямой, но и обратной связи. Исследуя общую экологическую роль почв и различные виды их влияния на атмосферные, гидрологические, биотические и другие компоненты экосистем биосферы, мы тем самым изучаем ответное воздействие самой почвы на факторы почвообразования. Однако проблема экологических функций почв шире и глубже анализа обратной связи в системе почва—факторы. Данная проблема охватывает дополнительный ряд не менее важных вопросов, касающихся, в частности, изучения внутренней жизни и функционирования почвенных систем в их взаимодействии со всеми звеньями природных комплексов. Почва оказалась планетарным узлом экологических связей с многочисленными глобальными функциями, деградация которых чревата для цивилизации самыми тяжелыми последствиями. Научные основы сохранения почв возникли как продолжение учения о экологических функциях почв, но имеют существенное отличие от охраны почв в традиционном ее понимании. Это отличие заключается в более широком функционально-экологическом подходе к проблеме сбережения почв и почвенного покрова. Если раньше охрана почв сводилась в основном к защите их от факторов разрушения (эрозии, дефляции, химического загрязнения и др.), то теперь она рассматривается лишь как важнейшая часть полнокомплексной системы сбережения почв в полном объеме - защита почв от прямого уничтожения и полной гибели, что предполагает ограничение отведения новых земель для строительства различных объектов, а также разрушающих военных испытаний и свалок, ограничение и запрещение открытых разработок полезных ископаемых, максимальное использование для промышленных и других объектов ранее выведенных их биосферы территорий и их участков. Другие блоки почвосохранения включают в себя защиту освоенных почв от качественной деградации, предотвращение негативных структурно-функциональных изменений освоенных почв, восстановление деградированных освоенных почв, сохранение и восстановление естественных почв как компонента биосферы. Указанный почвоохранный функционально-экологический биосферный подход, вытекающий из учения о почвенных экофункциях, знаменует собой важный прорыв в интеграции не только концептуального, но и прикладного знания и заставляет по-новому оценить всю природоохранную проблематику, поскольку в ней в связи с реализацией данного подхода появилась в качестве важнейшей составляющей особая охрана и Красная книга почв. Отставание развития особой охраны почв обусловлено рядом причин и прежде всего преобладанием утилитарной трактовки почвы в основном как объекта сельскохозяйственного процесса, главное назначение которого — получение урожая за счет обеспечения растений почвенными питательными веществами. Но начиная с 70-х годов такое понимание почвы не могло считаться удовлетворительным в связи с выходом публикаций по биогеоценотическим и биосферным функциям почв. Экофункции почв - Регулирование биогеохимических циклов элементов в биосфере. Регулирование состава атмосферы и гидросферы. Регулирование биосферных процессов. Накопление специфического органического вещества и энергии. Сохранение биологического разнообразия.

 

70. Окружающая среда. Экологические факторы. Основные факторы агрогенной и техногенной деградации экосистем.

(окружающая среда – вещество, энергия и пространство, окружающие живые организмы и воздействующие на них как положительно, так и отрицательно. Экологический фактор – элемент окружающей среды, положительно или отрицательно воздействующий на живые организмы, который при своем изменении вызывает у организмов ответные приспособительные эколого-физиологические изменения, наследственно закрепляющиеся в процессе эволюции. Классификация экофакторов - по происхождению – абиотические, биотические, природно-антропогенные, антропогенные, по среде возникновения (атмосферные, водные, орографические, эдафические, физиологические, популяционные, экосистемные, биосферные), по степени воздействия (летальные, экстремальные, лимитирующие, беспокоящие, мутагенные, тератогенные), по времени (эволюционные, исторические, действующие), по характеру действия (геофизические, географические, биогенные, биотические, эволюционные). абиотические – климатические, эдафические или почвенно-грунтовые – гранулометрический и химический состав почвы, ее физические свойства, орографические - условия рельефа. Биотические факторы – фитогенные – симбиоз, паразитизм и зоогенные – поедание, вытаптывание, опыление). Агрогенная деградация экосистем - переуплотнение, подкисление реакции, поступление к поверхности токсичных солей. Техногенная деградация экосистем - тяжелыми металлами, углеводородами, ядохимикатами, радионуклидами и пр.) - резкое изменение состава почвенных мигрантов и почвенного поглощающего комплекса и влияют на качественный и количественный состав почвенной биоты, вплоть до ее частичного или полного уничтожения. При этом трансформация вещественного состава почв может не вызывать изменения морфологического строения почвенного профиля. Чрезвычайно жесткая и продолжительная химическая агрессия на почву приводит к проявлению не только химического загрязнения, но и процессов химической трансформации морфологического строения почв, вплоть до стирания природных и образования новых техногенных горизонтов. Химическая трансформация может приводить к формированию горизонтов и новообразований, характерных для почв, формирующихся в иных природных условиях. Результатом названных процессов являются химически загрязненные и химически преобразованные почвы.

 

 

81. Природная среда и закономерности действия экологических факторов. Лимитирующие экологические факторы.

Природная среда – совокупность природных абиотических и биотических факторов по отношению к живым организмам вне зависимости от контактов с человеком, включает географическую оболочку, биогенную среду и абиотическую среду. Каждый фактор имеет пределы положительного влияния на организмы. Каждый фактор неодинаково влияет на разные функции организма. Оптимум для одних процессов может являться пессимумом для других. Так, температура воздуха от +40 до +45 °C у холоднокровных животных сильно увеличивает скорость обменных процессов в организме, но тормозит двигательную активность, и животные впадают в тепловое оцепенение. Для многих рыб температура воды, оптимальная для созревания половых продуктов, неблагоприятна для икрометания, которое происходит при другом температурном интервале. Степень выносливости, критические точки, оптимальная и пессимальные зоны отдельных индивидуумов не совпадают. Эта изменчивость определяется как наследственными качествами особей, так и половыми, возрастными и физиологическими различиями. Степень выносливости к какому‑нибудь фактору не означает соответствующей экологической валентности вида по отношению к остальным факторам. Например, виды, переносящие широкие изменения температуры, совсем не обязательно должны также быть приспособленными к широким колебаниям влажности или солевого режима. Эвритермные виды могут быть стеногалинными, стенобатными или наоборот. Экологические валентности вида по отношению к разным факторам могут быть очень разнообразными. Это создает чрезвычайное многообразие адаптации в природе. Набор экологических валентностей по отношению к разным факторам среды составляет экологический спектр вида. Несовпадение экологических спектров отдельных видов. Каждый вид специфичен по своим экологическим возможностям. Даже у близких по способам адаптации к среде видов существуют различия в отношении к каким‑либо отдельным факторам. Оптимальная зона и пределы выносливости организмов по отношению к какому‑либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Эта закономерность получила название взаимодействия факторов. Например, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Наоборот, один и тот же экологический результат может быть получен разными путями. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение. Создается эффект частичного взаимозамещения факторов. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Полное отсутствие воды или хотя бы одного из основных элементов минерального питания делает жизнь растения невозможной, несмотря на самые благоприятные сочетания других условий. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.

 

 



Последнее изменение этой страницы: 2016-06-10

headinsider.info. Все права принадлежат авторам данных материалов.