Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Структура векторной иллюстрации.


Структуру любой векторной иллюстрации можно представить в виде иерархического дерева. В такой иерархии сама иллюстрация занимает верхний уровень, а ее составные части – более низкие уровни иерархии.

1.Самый верхний иерархический уровень занимает сама картинка, которая объединяет в своем составе объекты + узлы + линии + заливки.

2.Следующий уровень иерархии – объекты, которые представляют собой разнообразные векторные формы.

3.Объекты иллюстрации состоят из одного или нескольких контуров: замкнутых и открытых. Контуром называется любая геометрическая фигура, созданная с помощью рисующих инструментов векторной программы и представляющая собой очертания того или иного графического объекта (окружность, прямоугольник и т.п.). Замкнутый контру – это замкнутая кривая, у которой начальная и конечная точки совпадают (окружность). Открытый контур имеет четко обозначенные концевые точки (синусоидальная линия).

4.Следующий уровень иерархии составляют сегменты, которые выполняют функции кирпичиков, используемых для построения контуров. Каждый контур может состоять из одного или нескольких сегментов. Начало и конец каждого сегмента называются узлами, или опорными точками, поскольку они фиксируют положение сегмента, «привязывая» его к определенной позиции в контуре. Перемещение узловых точек приводит к модификации сегментов контура и к изменению его формы. Замкнутые контуры (формы) имеют свойство заполнения цветом, текстурой или растровым изображением (картой). Заливка – это цвет или узор, выводимый в замкнутой области, ограниченной кривой.

5.На самом нижнем уровне иерархии расположены узлы и отрезки линий, соединяющих между собой соседние узлы. Линии наряду с узлами выполняют функции основных элементов векторного изображения.

 

Достоинства векторной графики

Самая сильная сторона векторной графики в том, что она использует все преимущества разрешающей способности любого устройства вывода. Это позволяет изменять размеры векторного рисунка без потери его качества. Векторные команды просто сообщают устройству вывода, что необходимо нарисовать объект заданного размера, используя столько точек сколько возможно. Другими словами, чем больше точек сможет использовать устройство вывода для создания объекта, тем лучше он будет выглядеть. Растровый формат файла точно определяет, сколько необходимо создать пикселов и это количество изменяется вместе с разрешающей способностью устройства вывода. Вместо этого происходит одно из двух либо при увеличении разрешающей способности, размер растровой окружности уменьшается, так как уменьшается размер точки составляющих пиксел; либо размер окружности остается одинаковым, но принтеры с высокой разрешающей способностью используют больше точек для любого пиксела. Векторная графика обладает еще одним важным преимуществом, здесь можно редактировать отдельные части рисунка не оказывая влияния на остальные, например, если нужно сделать больше или меньше только один объект на некотором изображении, необходимо просто выбрать его и осуществить задуманное. Объекты на рисунке могут перекрываться без всякого воздействия друг на друга. Векторное изображение, не содержащее растровых объектов, занимает относительно не большое место в памяти компьютера. Даже очень детализированные векторные рисунки, состоящие из 1000 объектов, редко превышают несколько сотен килобайт.

Недостатки векторной графики

Природа избегает прямых линий. К сожалению, они являются основными компонентами векторных рисунков. До недавнего времени это означало, что уделом векторной графики были изображения, которые никогда не старались выглядеть естественно, например, двухмерные чертежи и круговые диаграммы, созданные специальными программами САПР, двух и трех мерные технические иллюстрации, стилизованные рисунки и значки, состоящие из прямых линий и областей, закрашенных однотонным цветом. Векторные рисунки состоят из различных команд посылаемых от компьютера к устройствам вывода (принтеру). Принтеры содержат свои собственные микропроцессоры, которые интерпретируют эти команды и пытаются их перевести в точки на листе бумаги. Иногда из–за проблем связи между двумя процессорами принтер не может распечатать отдельные детали рисунков. В зависимости от типов принтера случаются проблемы, и у вас может оказаться чистый лист бумаги, частично напечатанный рисунок или сообщение об ошибке.

Применение векторной графики

Успехи компьютерных технологий, достигнутые в последние годы, не оставляют места сомнениям при выборе способов получения, хранения и переработки данных о сложных комплексных трехмерных объектах, таких, например, как памятники архитектуры и археологии, объекты спелеологии и т. д. Несомненно, что применение компьютеризации для этих целей – дело не далекого будущего, а уже настоящего времени. Последнее, конечно, в большой мере зависит от количества денежных средств, вкладываемых с этой целью.

Наука и инженерия

Системы CAD/CAM используются сегодня в различных областях инженерной конструкторской деятельности от проектирования микросхем до создания самолетов. Ведущие инженерные и производственные компании, такие как Boeing, в конечном счете двигаются к полностью цифровому представлению конструкции самолетов.

Архитектура является другой важной областью применения для CAD/CAM и совсем недавно созданных систем класса walkthrough (прогулки вокруг проектируемого объекта с целью его изучения и оценки). Такие фирмы, как McDonald's, уже с 1987 года используют машинную графику для архитектурного дизайна, размещения посадочных мест, планирования помещений и проектирования кухонного оборудования. Есть ряд эффектных применений векторной графики в области проектирования стадионов и дизайна спортивного инвентаря, новый парк в Балтиморе (Baltimore Orioles'Camden Yards Park).

Медицина стала весьма привлекательной сферой применения компьютерной графики, например: автоматизированное проектирование инплантантов, особенно для костей и суставов, позволяет минимизировать необходимость внесения изменений в течение операции, что сокращает время пребывания на операционном столе (очень желательный результат как для пациента, так и врача). Анатомические векторные модели также используются в медицинских исследованиях и в хирургической практике.

Научные лаборатории продолжают генерировать новые идеи в области визуализации. Задача сообщества компьютерной графики состоит в создании удобных инструментов и эффективных технологий, позволяющих пользователям продолжать научные изыскания за границей возможного и безопасного эксперимента. Например ,проект виртуального туннеля NASA Ames Research Center переносит аэродинамические данные в мир виртуальной реальности, интерес к которой значительно вырос в девяностые годы. NASA Ames было одним из пионеров в использовании и развитии технологий погружения людей в мнимую реальность. Специалисты NASA занимались разработкой специальных шлемов и дисплеев, трехмерных аудиоустройств, уникальных устройств ввода для оператора и созданием соответствующего программного обеспечения. Возник ряд компаний, занимающихся виртуальной реальностью, например: Fakespace, Cristal River Engineering и Telepresence Research.

Все эти инженерные и научные применения убеждают, что индустрия машинной графики начала обеспечивать пользователей новой технологией, при которой они действительно уже не заботятся о том, как формируется изображение – им важен результат.

Искусство, развлечения и бизнес

Согласно проведенным мною исследованиям, вплоть до начала девяностых годов доходы от использования векторной графики в научно–инженерных приложениях были значительно выше, чем доходы в области бизнеса и других областях, непосредственно не связанных с наукой. Однако в 1991 году доходы были поделены в равной степени, а баланс теперь устойчиво сдвигается в сторону нетехнических приложений. Я считаю, что к 1998 году около двух третей всех доходов от компьютерной графики поступит именно из нетехнических областей применения. Некоторые из этих применений получили настолько широкое распространение, что возникли споры, насколько они действительно являются машинной графикой. Например, мультимедиа воспринимают отдельно от машинной графики, что, однако, не так, вследствие явного доминирования графических изображений.

"Классическая" векторная графика до сих пор используется в различных приложениях бизнеса, включая разработку концепции, тестирование и создание новых продуктов, но бизнес также стал лидирующим потребителем систем мультимедиа, например, в обучении или маркетинговых презентациях. Графика все шире проникает в бизнес – сегодня фактически нет документов, созданных без использования какого–либо графического элемента. Соответствующее программное обеспечение специально разработано, чтобы позволить пользователям сконцентрироваться больше на содержании, а не на графическом исполнении.

Грядет всплеск использования графики в анимации, особенно в области индустрии развлечений. Кинофильм Стивена Спилберга "Парк Юрского периода" установил в 1993 году новый стандарт фотореализма в графике. Этот фильм не единичный случай применения 3D графики в кино, и Голливуд расширяет сферу использования специальных эффектов машинной графики, только в 1994 году выпустив несколько высокохудожественных фильмов: "The Lion King", "The Mask", "True Lies" и "Forrest Gump".

Виртуальная реальность находит свою нишу в индустрии развлечений и видеоиграх. Число виртуальных галерей и развлекательных парков быстро растет. По моим оценкам 30% (то есть 144 млрд. долл.) всего дохода от использования систем виртуальной реальности было получено в прошлом году именно от разного рода игр, и доходы от этих применений будут расти.

Лаборатория Media Lab МТИ является уникальным исследовательским центром разработки совершенных систем взаимодействия "человек–компьютер". Например, система News в проекте Future использует последние достижения в области графики, реконструкции звука и изображений, а также моделировании различных объектов для представления новых результатов исследований и их презентации в виде соответствующих текстов, графики, аудио и видео.

 

Векторная графика в Интернете

Ни для кого не секрет – сегодня, чтобы не затеряться на просторах Internet и привлечь к себе внимание пользователей, никак нельзя обойтись без графического оформления Web–страниц и узлов. Однако здесь на пути разработчиков возникает проблема: графические технологии для Web не поспевают в своем развитии за другими технологиями, и возможности в данной области остаются весьма ограниченными.

В самом деле, два наиболее популярных в настоящее время графических формата Internet – GIF и JPEG – являются уже довольно старыми. Конечно, неудачными назвать их никак нельзя, ведь сам факт столь длительного их существования – свидетельство этому. Но, с другой стороны, вряд ли можно поспорить с тем, что возможности данных форматов не отвечают современным требованиям в области графики. Так, формат GIF поддерживает только 256–битовый цвет, а в случае применения формата JPEG при большой степени сжатия существенно снижается качество изображения. Кроме того, еще в 1995 г. возможность свободного использования GIF оказалась под вопросом, когда компании Unisys, которой принадлежит реализованный в этом формате алгоритм сжатия LZW, и CompuServe, разработавшей сам формат, собрались взимать лицензионные отчисления с каждой программы, использующей его.

В сложившейся ситуации группа независимых разработчиков Internet приняла решение о разработке формата, который соответствовал бы или даже превосходил по своим возможностям GIF, но был при этом простым в создании и полностью мобильным. Новый формат получил название Portable Network Graphics (PNG) и был одобрен консорциумом W3C в 1996 г.

Формат PNG поддерживает 48–битовые цветные и 16–битовые черно–белые изображения и обеспечивает более быструю их загрузку, чем формат GIF. Он также включает в себя немало дополнительных возможностей, например альфа–каналы (alpha channel), позволяющие устанавливать уровень прозрачности для каждого пиксела, и гамма–коррекцию. Механизм сжатия изображения в PNG реализован на базе фильтров, позволяющих оптимизировать данные перед сжатием, и алгоритма LZ77, применяемого в ZIP–архиваторах.

Однако, несмотря на ряд преимуществ PNG пока не удалось стать реальной альтернативой GIF и JPEG. Виной тому было отсутствие поддержки со стороны разработчиков браузеров. Правда, к сегодняшнему дню в данном направлении произошли существенные сдвиги: начиная с Internet Explorer 4.0 и Netscape Navigator 4.04 поддержка PNG реализована непосредственно в броузерах; до этого она обеспечивалась за счет встраиваемых компонентов. По мнению ряда специалистов, вскоре можно ожидать широкого распространения нового формата (после массового перехода пользователей на последние версии популярных браузеров).

Следующим по популярности растровым форматом для Web можно назвать FlashPix, разработанный группой компаний: Kodak, Hewlett–Packard, Microsoft и Live Picture. Он базируется на принципах JPEG–компрессии, но содержит ряд усовершенствований, которые позволяют уменьшить степень искажения изображений. Основное преимущество данного формата – многоуровневая организация файла. В начале загружается изображение с самым низким разрешением и впоследствии, по мере надобности, подкачивается более качественная версия. Microsoft избрала модификацию этого формата в качестве основы для своего растрового редактора PhotoDraw 2000, так что в недалеком будущем следует ожидать поддержки его браузером Internet Explorer.

Интересной разработкой обладает компания Iterated Systems, которая создала свой формат на основе фрактальной компрессии (Fractal Image Format, FIF), а также выпустила программу преобразования основных форматов в FIF и плагины для просмотра сжатых по фрактальному алгоритму изображений в основных браузерах.

К сожалению, фрактальная компрессия, как и JPEG, имеет существенный недостаток: согласно этим алгоритмам, для анализа изображение перед сжатием разбивается на отдельные блоки, что затрудняет его постепенную прорисовку при загрузке с Web–сайта.

Наиболее перспективные – растровые форматы, основанные на алгоритмах wavelet–сжатия. В этой области ведут разработки практически все компании, которые занимаются созданием графических форматов. Самым многообещаемым является, безусловно, JPEG 2000. Работа над ним еще не завершена, но заявленные параметры впечатляют: 256 каналов цвета, что позволит формату работать с любым цветовым пространством и поддерживать множество альфа–каналов; встраивание ICC–профилей; неограниченное поле для метаданных. Но главное преимущество wavelet–технологии – потоковость. Wavelet–поток можно прервать в любое время, при этом изображение все равно воспроизводится, только качество его будет зависеть от количества загруженных данных.

Компания AT&T разработала и собственный формат на основе wavelet–компрессии – DjVu. Его главная особенность – распознавание текста при компрессии содержащих его изображений и сжатие отдельно графического и текстового слоя. По утверждению компании, основным предназначением этого формата и является публикация в Web сканированных документов. На сайте AT&T по адресу djvu.research.att.com можно получить бесплатный плагин для просмотра DjVu –файлов, а также целую библиотеку, опубликованную в этом формате.

Как бы ни были хороши вышеперечисленные форматы, всех их объединяет один недостаток – растр. Например, реализованные с их помощью изображения довольно сложно модифицировать и даже масштабировать. Кроме того, несмотря на использование различных методов сжатия, они все–таки имеют немалый размер, а следовательно, и относительно большое время загрузки, что для Web–графики является особенно критичным.

Векторная графика основана не на хранении информации о каждом пикселе, а на командах рисования линий и заполнения форм. Используется она уже довольно давно, но в отличие от традиционных замкнутых форматов векторные форматы для Web построены на базе открытых стандартов, главным образом языков маркировки, в которых для определения тегов и других элементов применяется обычный текст, что значительно упрощает манипулирование свойствами изображений. Преимуществами векторной графики на основе языков маркировки являются также возможности выбора, индексирования и поиска элементов изображения и привязки ее к другим элементам.

Однако говорить о массовом внедрении векторной графики в Web пока еще рано, в первую очередь из–за отсутствия единого формата.

Наиболее распространенным в данный момент является формат, разработанный компанией Macromedia, – Flash. Благодаря своим уникальным возможностям его последняя (третья) версия очень быстро завоевала популярность. Flash 3 поддерживает анимацию по кейфреймам, морфинг, прозрачные объекты, гиперссылки, встраивание звуковых и видеофайлов. Средства для его создания достаточно просты в пользовании, хорошо документированы, плагины для просмотра распространяются бесплатно, а размер выходных файлов крайне мал.

Но все его преимущества, к сожалению, блекнут перед одним единственным недостатком, который заставил Macromedia отказаться от дальнейшей разработки формата. Этот недостаток – закрытость, ведь файл Flash – двоичный. Таким образом, его можно редактировать только в специальной программе. Поэтому в последнее время различными компаниями и организациями предложен целый ряд языковых форматов, и каждый из них претендует на роль единого стандарта. В число таких форматов входят Web Schematics, DrawML, PGML и VML.

Web Schematics представляет собой язык гипертекстовой маркировки для создания чертежей и диаграмм. Его разработчики попытались создать аналог функций рисования, используемых в базовых графических средствах систем воспроизведения документов, таких, как Adobe FrameMaker и Microsoft Word. Данный формат использует модели рендеринга и представлений HTML и CSS1.

 

Редактируемая двумерная графика для Интернета

Microsoft, Hewlett–Packard и три фирмы, специализирующиеся в области ПО, представили на рассмотрение консорциума World Wide Web стандарт, предназначенный для реализации высококачественной редактируемой двумерной векторной графики в Интернете.

С помощью языка векторной разметки (Vector Markup Language – VML) Web–дизайнеры смогут без труда редактировать, вырезать и вставлять векторные изображения в прикладные программы. Такая возможность, по мнению Стива Склеповича, менеджера по продуктам компании Microsoft, чрезвычайно нужна пользователям.

В отличие от растровой графики, представляющей собой изображения, образованные матрицами пикселов, векторные изображения состоят из линий, квадратов и других геометрических объектов.

До сих пор желающим дополнить свои Web–страницы векторной графикой приходилось пользоваться форматами растровых изображений, таких, как GIF, JPEG и PNG. Однако уменьшить или увеличить их размеры, даже расширяя или сжимая окно браузера, не удавалось.

Благодаря VML дизайнеры Web–узлов смогут изменять масштаб векторных изображений на Web–страницах и загружать графику значительно быстрее, чем изображения в растровом формате.

«Все отчаянно нуждаются в векторном графическом формате, – сказал Склепович. – Он действительно необходим. Программисты, работающие с векторной графикой, придумывали хитрые приемы и сохраняли изображения в растровом формате, чтобы обрабатывать их должным образом».

Формат VML появился на базе языка Extensible Markup Language (XML – расширяемый язык разметки), дополняющего HTML. Web–дизайнеры получили в свое распоряжение более гибкий инструмент, который позволяет создавать собственные теги, сообщают представители компаний.

Вместе с Microsoft и HP в консорциум W3C с предложением принять стандарт VML обратились компании AutoDesk, Macromedia и Visio Corp.

Они планируют в будущем выпускать продукты, использующие VML.

Например, Microsoft намерена предусмотреть возможность работы с VML в браузере Microsoft Explorer, операционной системе Windows и очередной версии Microsoft Office, заявил Склепович.

Это обеспечит взаимодействие офисного ПО и программ для проектирования и черчения.

В настоящее время компании используют для работы с векторной графикой различные стандарты.

Например, фирма Macromedia использует в своем инструментальном пакете векторной графики и анимации Flash собственный формат векторной графики под названием SWF. Компания Autodesk в пакете AutoCAD использует формат DWF.

Кроме того, благодаря VML пользователи смогут открывать и редактировать изображения, используя для этого пакет Office или в виде HTML–файла без потери качества, заявил Склепович.

 



Последнее изменение этой страницы: 2016-07-22

headinsider.info. Все права принадлежат авторам данных материалов.