Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Квантомеханический гармонический осциллятор


Линейный гармонический осциллятор — система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории (см. § 142). Пружинный, физический и мате­матический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора (см. (141.5)) равна

(222.1)

где w0 собственная частота колебаний осциллятора, т — масса частицы.

Амплитуда малых колебаний классического осциллятора определяется его полной энергией Е (см. рис. 16). В точках с координатами ±xmax полная энергия Е равна потенциальной энергии. Поэтому с классической точки зрения частица не может выйти за пределы области (–xmax, +xmax). Такой выход означал бы, что ее потенциальная энергия больше полной, что абсурдно, так как приводит к выводу, что кинетическая энергия отрицательна. Таким образом, классический осциллятор находится в «потенци­альной яме» с координатами – xmax <х< xmax «без права выхода» из нее.

Гармонический осциллятор в квантовой механике —квантовый осциллятор — опи­сывается уравнением Шредингера (217.5), учитывающим выражение (222.1) для потен­циальной энергии. Тогда стационарные состояния квантового осциллятора определя­ются уравнением Шредингера вида

(222.2)

 

где Е — полная энергия осциллятора. В теории дифференциальных уравнений до­казывается, что уравнение (222.2) решается только при собственных значениях энергии

(222.3)

Формула (222.3) показывает, что энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется. Энергия ограничена снизу отличным от нуля, как и для прямоугольной «ямы» с бесконечно высокими «стенками» (см. § 220), минималь­ным значением энергии E0=1/2ћw0. Существование минимальной энергии — она назы­вается энергией нулевых колебаний — является типичной для квантовых систем и пред­ставляет собой прямое следствие соотношения неопределенностей.

29. Атом водорода

Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелияНе+, двукратно ионизованного лития Li++и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1),

(223.1)

где r — расстояние между электроном и ядром.. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает.

Состояние электрона в атоме водорода описывается волновой функцией y, удовлетворяющей стационарному уравнению Шредингера (217.5), учитывающему значение (223.1):

(223.2)

где т — масса электрона, Е — полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (223.2) обычно используют сферическую систему координат: r, q, j. Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важней­ших результатов, которые из него следуют, пояснив их физический смысл.

1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (223.2) имеют решения, удовлетворяющие требованиям однозначности, конеч­ности и непрерывности волновой функции y, только при собственных значениях энергии

(223.3)

т. е. для дискретного набора отрицательных значений энергии.

2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (223.2) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным п, орбитальным l и магнитным тl.

3. Спектр. Квантовые числа n, l и ml позволяют более полно описать спектр испускания (поглощения) атома водорода, полученный в теории Бора (см. рис. 294).

Спектры щелочных металлов

Спектры испускания атомов щелочных металлов, подобно спектру водорода, состоят из нескольких серий линий. Наиболее интенсивные из них получили названия: главная, резкая, диффузная и основная (или серия Бергмана). Эти названия имеют следующее происхождение. Главная серия названа так потому, что наблюдается и при поглощении. Следовательно, она соответствует переходам атома в основное состояние. Резкая и диффузная серии состоят соответственно из резких и размытых (диффузных) линий. Серия Бергмана была названа основной (фундаментальной) за свое сходство с сериями водорода.

Еще 'в конце прошлого столетия Ридберг установил эмпирические формулы, позволяющие вычислить частоты серий щелочных металлов. Эти формулы для всех серий сходны и имеют вид:

где —частота, соответствующая границе серии, — постоянная Ридберга (59,5), —целое число, —дробное число.

Таким образом, частоты линий могут быть представлены как разности двух термов: постоянного ( ) и переменного, имеющего более сложный вид, чем баль-меровский терм . Константы и а для различных

серий имеют, вообще говоря, разное значение. Так, например, спектральные серии натрия можно представить следующими формулами.

Резкая серия(буква s является начальной буквой наименования серии: sharp — резкий).

Главная серия:(principal — главный),

Диффузная серия:(diffuse — диффузный).

Основная серия (серия Бергмана)(fundamental — основной).:

Вследствие равенства константы / нулю переменный терм в формуле для основной серии совпадает с баль-меровским, а сама серия, как уже отмечалось, является водородоподобной.



Последнее изменение этой страницы: 2016-07-22

headinsider.info. Все права принадлежат авторам данных материалов.