Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Виды взаимодействий и классы элементарных частиц.


Элементарная частица — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичные фундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно.

Все элементарные частицы делятся на два класса:

бозоны — частицы с целым спином (например, фотон, глюон, мезоны).

фермионы — частицы с полуцелым спином (например, электрон, протон, нейтрон, нейтрино);

По видам взаимодействий элементарные частицы делятся на следующие группы:

Составные частицы

адроны — частицы, участвующие во всех видах фундаментальных взаимодействий. Они состоят из кварков и подразделяются, в свою очередь, на:

мезоны — адроны с целым спином, то есть являющиеся бозонами;

барионы — адроны с полуцелым спином, то есть фермионы. К ним, в частности, относятся частицы, составляющие ядро атома, — протон и нейтрон.

Фундаментальные (бесструктурные) частицы

лептоны — фермионы, которые имеют вид точечных частиц (т. е. не состоящих ни из чего) вплоть до масштабов порядка 10−18 м. Не участвуют в сильных взаимодействиях. Участие в электромагнитных взаимодействиях экспериментально наблюдалось только для заряженных лептонов (электроны, мюоны, тау-лептоны) и не наблюдалось для нейтрино.

Космические лучи.

Космические лучи (космическое излучение) - частицы, заполняющие межзвездное пространство и постоянно бомбардирующие Землю.

Максимальные энергии космических лучей ~3.1020 эВ, т.е. на несколько порядков превосходят энергии, доступные современным ускорителям на встречных пучках (максимальная эквивалентная энергия Теватрона ~2.1015 эВ, LHC - около 1017 эВ). Поэтому изучение космических лучей играет важную роль не только в физике космоса, но также и в физике элементарных частиц. Ряд элементарных частиц впервые был обнаружен именно в космических лучах. Хотя в состав космических лучей входят не только заряженные, но и нейтральные частицы (особенно много фотонов и нейтрино), космическими лучами обычно называют заряженные частицы.

Различают следующие типы космических лучей:

Галактические космические лучи – космические частицы, приходящие на Землю из нашей галактики. В их состав не входят частицы, генерируемые Солнцем.

Солнечные космические лучи – космические частицы, генерируемые Солнцем.

Кроме этих двух основных типов космических лучей рассматривают также метагалактические космические лучи - космические частицы, возникшие вне нашей галактики. Их вклад в общий поток космических лучей невелик.

Космические лучи, не искаженные взаимодействием с атмосферой Земли, называют первичными. Поток галактических космических лучей, бомбардирующих Землю, примерно изотропен и постоянен во времени и составляет ~1 частица/см2. с (до входа в земную атмосферу). Плотность энергии галактических космических лучей ~1 эВ/см3, что сравнимо с суммарной энергией электромагнитного излучения звёзд, теплового движения межзвёздного газа и галактического магнитного поля. Таким образом, космические лучи – важный компонент Галактики.

 

Нейтрино.

Нейтрино – это стабильная элементарная частица, относящаяся по своим статистическим свойствам к фермионам, т.е. частицам с полуцелым спином, и входящая в группу лептонов.

Для нейтрино, как и для всех лептонов, четность не указывается. Это связано с тем, что лептоны участвуют в слабых взаимодействиях, которые, как известно, не сохраняют четность. А, следовательно, по отношению к этим взаимодействиям понятие внутренней четности не имеет смысла.

 

Важной особенностью нейтрино является слабое взаимодействие с веществом. Сечение взаимодействия нейтрино в зависимости от его энергии лежит в пределах от см^2 до см^2. Поэтому пробег нейтрино низких энергий (порядка 1 МэВ) в твердой среде составляет .

 

Известно три типа или аромата нейтрино. Это электронные, мюонные и тау нейтрино. Различные типы нейтрино имеют разные лептонные заряды: . Для нейтрино справедлив закон сохранения лептонного заряда.



Последнее изменение этой страницы: 2016-07-22

headinsider.info. Все права принадлежат авторам данных материалов.