Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Геохимия - определение, цели, задачи


Геохимия - определение, цели, задачи

Геохимия – наука, изучающая распространение атомов химических элементов в космосе и на Земле, историю их существования, происхождение, а также поведение в различных природных условиях.

Понять историю атомов в земной коре (и вообще на Земле и в космосе) можно, лишь изучив свойства этих атомов, так как различные природные процессы, связанные с распределением и миграцией химических элементов в пространстве и времени, являются функцией в первую очередь этих свойств. Современная геохимия учит, что распространенность элементов, т. е. относительные их количества на Земле и в космосе, определяется устойчивостью ядер их атомов, химические же свойства и перемещение атомов (миграция) находятся в тесной связи с характером внешних электронных орбит атомов.

Геохимия, наука сравнительно молодая, переживает в настоящее время стадию особенно интенсивного развития. Достаточно четко оформились следующие основные задачи:

1. Определение относительной и абсолютной распространённости элементов и изотопов в Земле и на её поверхности.

2. Изучение распределения и перемещения элементов в различных частях Земли (коре, мантии, гидросфере и т. д.) для выяснения законов и причин неравномерного распределения элементов.

3. Анализ распределения элементов и изотопов в космосе и на планетах Солнечной системы (космохимия).

4. Изучение геологических процессов и веществ, производимых живыми или вымершими организмами

5.Изучение распространения загрязнённых веществ, связанных с отходами,выбросами…

Геохимия окружающей среды изучает распределение химических элементов верхней части литосферы. Ей приходится много заниматься минералами и горными породами, поскольку они предопределяют форму нахождения веществ и способы их движения в окружающей нас среде. Она должна ответить и на такие вопросы – как сформировался вещественный состав окружающей нас среды, и каковы прогнозы его изменения в будущем. Жизнедеятельность человека протекает на поверхности земной коры, поэтому её вещественный состав непосредственным образом сказывается на качестве его существования. Геохимия участвует в поиске месторождений полезных ископаемых, так как концентрация химических элементов, сконцентрированных в месторождении, постепенно снижается в пространстве при удалении от него.

Практическая значимость

В.И. Вернадский (2005) подчеркивал особую роль геохимии, которая необходима для химиков, геологов, биологов, географов, а её открытия касаются фундаментальных областей физики и подходят к освещению самых общих взглядов на устройство Вселенной. Практическое значение геохимии выражается уже в том, что аномальные содержание веществ в земной коре: очень низкое, или очень высокое может вызвать ряд заболеваний у человека, животных, растений с тяжелыми последствиями. А.А. Сауков (1975) указывал на пользу геохимии в поисках новых источников, видов сырья, что особенно касается рассеянных элементов. По его мнению, человечеству не грозит нехватка минерального сырья, так как в земной коре оно находится в бесконечно большом количестве (относительно потребностей человечества), но в рассеянном состоянии. Необходимы технологии, аналогичные тем, которыми пользуются бактерии, грибы, использующие энергию сол. света для извлечения из первичных минералов горных пород необходимых питательных веществ: фосфатов, солей калия, натрия, кальция, магния, железа и т.д.

Геохимия участвует в поиске месторождений полезных ископаемых, так как концентрация химических элементов, сконцентрированных в месторождении, постепенно снижается в пространстве при удалении от него.

Методология и методы геохимии

Мет.принцип – изучение природных процессов на атомарном уровне, прослеживается судьба атомов в природных системах (природно-естественных).

Атомы в любых природных средах.

Изучение качественного и количественного сосстава.Аналитические методы.

(зависит от количства элемента, от чувствительности метода)

Геохимическое картографирование.

Геохимические методы исследований

Для решения своих задач геохимия пользуется различными методами. Изучение качественного и количественного состава горных пород, минералов, вод, газа, живого вещества ведется аналитическими методами: химическим, микрохимическим, спектрально-оптическим квантометри-ческим, рентгенохимическим, полярографическим, радиохимическим, лю-минесцентным и др.
Геохимия предъявляет к этим методам особые, более повышенные требования, чем другие науки. Иногда приходится комбинировать различные методы, чтобы еще более повысить чувствительность определений.
Одним из наиболее важных методов исследований в геохимии окружающей среды – это сравнительно-географический. В течение ряда последних десятилетий большие успехи сделаны в разработке и применении на практике важного метода — геохимического картирования, т. е. составления для определенного участка территории такой карты, которая давала бы представление о содержании тех или иных элементов в любой точке изучаемого участка. Таковы, например, купрометричеокие карты для медных месторождений, станнометрические карты — для оловянных и т. п. На этих картах точки одинаковых содержаний данного элемента соединяются соответствующими кривыми. Такие карты помогают рационально направлять разведочные работы, а в ряде случаев и производить подсчеты запасов металла в данном месторождении.
Кроме подробных частных карт, можно составлять и общие карты, на которые особыми способами могут наноситься спектры химических элементов (соотношения). Попытки составления таких общих карт делались для массивов изверженных пород.
1. Рентгено-флуоресцентный анализ (РФА, XRF) . В настоящее время наиболее широко используемый метод для определения главных и редких элементов в породах. Можно определить до 80 элементов при широком ряде концентраций от 100 % до первых г/т.
2. Атомно-абсорбционная спектрометрия (ААС). Высокая чувствительность, но не высокая производительность, не может сравнится с РФА и ІСР-MS.
3. Нейтронно-активационный анализ: инструментальный нейтронно-активационный анализ (ИНАА); радиохимический нейтронно-акти-вационный анализ (НАА).
4. Гамма-спектрометрия. Измерение естественной радиоактивности трех элементов U, Th, K. С помощью детектора измеряется характерное излучение каждого элемента.
5. Эмиссионная спектрометрия с индуктивносвязанной плазмой. Отно-сительно новый вид анализа.
6. Масс-спектрометрия. В различной форме это наиболее эффективный метод определения изотопных отношений: масс-спектрометрия с изотопным разбавлением; масс-спектрометрия с индуктивносвязанной плазмой ІСР-MS
7. Электронно-микропробный (микрозондовый анализ). Определение пет-рогенных элементов в единичных малых зернах минералов. По принципу аналогичен рентгено-флуоресцентному методу, но образец возбуждается потоком электронов.
8. Ион-микропробный анализ (ионный зонд). Применяется для определения редких элементов и изотопов.

История науки

Геохимия имеет глубокие корни. Её основы могут быть прослежены в античности, но многие из открытий, лежащих в основе науки, были сделаны между 1800 и 1910 годами. Была составлена периодическая система элементов, открыта радиоактивность и разработана термодинамика гетерогенных систем. Солнечный спектр был использован для определения состава Солнца. Эта информация, совместно с химическими анализами метеоритов, открыла дверь для нового понимания Вселенной.

В течение первой половины двадцатого века множество учёных использовали разнообразные методы для определения состава земной коры, и геохимия многих редких элементов была изучена с использованием появившегося метода эмиссионной спектроскопии. Вернадский основал биогеохимию. Кристаллические структуры большинства минералов были определены методом рентгеновской дифракции. Родилась изотопная геохимия. Огромный прогресс науки и технологий во время Второй мировой войны привёл к появлению новых приборов. Но геохимия в это время ещё развивалась сравнительно медленно. В 1950-х годах всего нескольких журналов было достаточно для публикации всех важных достижений в геохимии. На собрании Американского геофизического общества геохимических сессий было несколько, большинство из них было посвящено локальным проблемам и не выходили за рамки геохимии.

Однако в 1960-х годах начался расцвет геохимии, продолжающийся до сих пор. За это время в науке произошёл существенный прогресс. Атмосферная и морская геохимия интегрировались в геохимию твёрдой Земли; космохимия и биогеохимия внесли огромный вклад в наше понимание истории нашей планеты. Началось изучение Земли как единой системы.

Масштабные морские экспедиции показали, как и насколько быстро смешиваются воды океанов, они продемонстрировали связь между морской биологией, физической океанологией и морским осадконакоплением. Открытие гидротермальных источников показало, как формируются рудные месторождения. Были открыты прежде неизвестные экосистемы, и были выяснены факторы, которые управляют составом морской воды.

Теория тектоники плит преобразила геохимию. Геохимики наконец поняли поведение осадков и океанической коры в зонах субдукции, их погружение и эксгумацию. Новые эксперименты при температурах и давлениях глубин

Земли позволили выяснить, какова трехмерная структура мантии и как происходит генерация магм. Доставка на Землю лунных пород, исследование с помощью космических аппаратов планет и их спутников и успешный поиск планет в других звёздных системах произвели революцию в нашем понимании Вселенной.

Геохимия также тесно срослась с экологией. Открытие озоновых дыр прозвучало как недвусмысленный тревожный признак и источник новых фундаментальных взглядов в фотохимии и динамике атмосферы. Увеличение содержания СО2 в атмосфере вследствие сжигания ископаемого топлива и уничтожения лесов было и будет предметом основных дискуссий о глобальных антропогенных изменениях климата. Исследование этих явлений служит источником новой информации о взаимодействии атмосферы с биосферой, корой и океанами.

На сегодня геохимия заняла ведущее место среди наук о Земле. Она изучает глобальные перемещения вещества и энергии во времени и пространстве. Сбылось предсказание Вернадского о центральной роли геохимии среди наук о веществе.

Ещё версия истории:

Термин геохимия предложен Ф.Шёнбейном (швейц. химик) в 1838 г. для обозначения науки охимических процессах в земной коре.
Этот термин использовал основатель геохимии В.И.Вернадский в первом десятилетии ХХ века для обозначения созданной им науки - науки об истории атомов земли.
В 70-х годах появилась информация о породах Луны, атмосферах Венеры и Марса. Поэтому Перельман отмечает, что геохимия - “изучает естественную историю атомов Земли и других планет земной группы”.

Геохимические знания до возникновения геохимии как науки (истоки геохимии):

1) Понятие о химическом элементе было впервые введено английским врачом и химиком Робертом Бойлем (1627 - 1691).

2) В 1676 г. Христиан Гюйгенс впервые высказал идею о единстве химического состава космоса.

3) В 1794 г. Э. Хладш доказал космическое происхождение метеоритов, в 1802 и 1804 гг. В.Гарвардом (Англия) и Т.Ловицем (Россия) выполнены первые химические анализы метеоритов. Это подтвердило идею о единстве химического состава мироздания (земли и космоса).

4) B 1815 г. В.Филлипсом (Англия) сделана первая попытка выяснить средний химический состав ЗК, оценена распространенность 10-ти химических элементов и показано количественное преобладание 4-х элементов: O, Si, Al, Fe.

5) Ж.Эли-де-Бомон (Франция, 1798 - 1894) связал историю химических элементов с магматическими и вулканическими процессами. Впервые нарисовал картину химической эволюции Земли, основываясь на физических и химических свойствах элементов (начиная от космической эпохи).

6) Возникновение геохимии стало возможным после утверждения атомно-молекулярной теории в физике и химии и выяснения основных особенностей строения атома на основании ПЗ Д.Менделеева, а также накопления большого числа эмпирических данных по распространению химических элементов в минералах и горных породах (всё это происходило в XIX веке).

7) Два открытия второй половины XIX века заложили фундамент геохимии:
- открытие в 1859 г. Р.Бунзеном и Г.Кирхгофом спектрального анализа
- открытие в 1869 г. Д.Менделеевым ПЗ химических элементов.


ВОЗНИКНОВЕНИЕ ГЕОХИМИИ: РАБОТЫ Ф.КЛАРКА, В.И.ВЕРНАДСКОГО, В.М.ГОЛЬШМИДТА, А.Е.ФЕРСМАНА,.П.ВИНОГРАДОВА.
Первая по-настоящему геохимическая проблема и направление геохимии это изучениераспространения и распределения химических элементов в геологических телах и объектах от минералов и пород к ЗК в целом, определение среднего состав ЗК.

Это направление было заложено Ф.Кларком. Он трактовал геохимию как совокупность сведений о химическом составе ЗК и не ставил в качестве задачи геохимии изучение истории атомов планеты. В 1889 г. Ф.Кларк на основе огромного количества анализов горных пород (отобрав 880 анализов) дал первую сводную таблицу среднего химического состава ЗК. В 1908 г. выходит его сводка по геохимии “Data of geochemistry”: данные по составу горных пород, почв, вод; приведен баланс главных химических элементов в верхних оболочках Земли. В 1924 г. совместно сГ.Вашингтоном он публикует последнюю таблицу средней распространенности элементов в 16-км слое Земли - это обобщение послужило фундаментом геохимии.

В.И. Вернадский
Рождение геохимии как отдельной науки произошло в 1908 - 1911 гг. благодаря В.И.Вернадскому. До его работ господствовало представление о минеральной форме нахождения элементов; широко используя спектральный анализ, он определял содержания редких элементов в горных породах исоздал представление о “неминеральной”, “рассеянной” форме нахождения химических элементов(“все элементы есть везде”, но в разных количествах). В трудах В.И.Вернадского дано чёткое определение геохимии, круга изучаемых ею проблем (распределение элементов; история элементов). Первый курс геохимии в России был прочитан в 1912 г. А.Е.Фердсманом, а развитию геохимии за рубежом способствовало преподавание В.И.Вернадским геохимии в Праге и Париже.

Работы В.И.Вернадского охватывают многие разделы геохимии:
- показана важная роль живого вещества в миграции химических элементов (биогеохимия)
- всесторонне оценено значение радиоактивности для всех наук о Земле (ядерная геология) и т.д.
Вокруг В.И.Вернадского формировалась геохимическая школа: А.Е.Ферсман, А.П.Виноградов и многие другие. Он был организатором Радиевого института, биогеохимической лаборатории, Комитета по метеоритам.

А.Е.Ферсман

В 1933 -39 гг. вышел его фундаментальный 4-х томный труд “Геохимия”, который всесторонне оценил проблему распространенности элементов, связав её с последними достижениями астро- и атомной физики. Работы А.Е.Ферсмана были посвящены изучению миграции химическихэлементов в зависимости от строения их атомов и общих физико-химических свойств.

Также А.Е.Ферсман:

1) Выделил факторы миграции химических элементов
2) Дал классификацию геохимических процессов
3) Разрабатывал геоэнергетическую теорию для объяснения последовательности выделения минералов из растворов и расплавов в зависимости от величины энергии кристаллической решётки
4) Был основателем геохимических методов поисков ПИ
5) Оставил плеяду учеников и последователей: В.В.Щербина, А.А.Сауков, К.Власов, Д.И.Щербаков и д.р.

В.М. Гольшмидт (1888 - 1947)

1) На основании данных о строении атомов и их нахождении в природных телах в 1924 г. предложил первую геохимическую классификацию элементов, широко известную и используемую до наших дней
2) Вычислил ионные радиусы для объяснения форм нахождения элементов в минералах, разработал правила изоморфизма

Постоянные компоненты воздуха

элемент номер процент
N2 78.11
O2 20.95
Ar 0.93
Ne   0.003
He,CH3,Kr,H2,NO2,Xe ------ ----------

Км – гомосфера

Гидросфера

элемент процент элемент Процент
O 85.89 Ca 0.042
H 10.8 K 0.037
Cl 1.93 Br 6.6*10-3
Na 1.07 C 2*10-3
Mg 0.13 Sr 1*10-3
S 0.098 B 4*10-3

Солёность 3 – 3.5%

Понятие о миграции элементов. Примеры концентрации и рассеяния элементов в земной коре.

 

Миграция – перемещение химических элементов, ведущих к их концентрации элементов или к их рассеиванию.

Миграция – перемещение молекул и атомов в земной коре, движимое посредством целого ряда факторов различного происхождения и протекающее несколькими способами.

Способность элемента к миграции определяется формой его нахождения в земной коре: горные породы и минералы, живое вещество, магма, рассеянная форма. Разнообразие миграции элементов характеризует число его минералов, генетических типов рудных месторождений и т. д. Участки земной коры, в которых на коротком расстоянии происходит резкое уменьшение интенсивности миграции химических элементов и, как следствие, их концентрация.

Геохимическая миграция в различных средах различается в зависимости от степени трещиноватости:

1. В непрерывной пористой среде, миграция проходит с одинаковой скоростью между частицами породы;

2. В дискретной пористой среде, т.е. из отдельных частиц (почва, глина). Размеры пор внутри частицы отличается от пор между ними, следовательно, скорости миграции в разных частях породы различны;

3. В дискретной среде, взаимодействие с раствором происходит только на поверхности частиц среды.

Содержание элемента в данной пород (или вообще какой-нибудь системе) характеризуется кларком концентрации. Кларк концентрации КК представляет собой отношение содержания элемента в данной породе С к его кларку (содержанию в земной коре) К:

КК = С/К.

Величина, обратная кларку концентрации, называется кларком рассеяния:

КР = К/С.

Поскольку К и С не могут равняться нулю (в силу закона Вернадского-Кларка) КК и КР также всегда отличны от нуля. Наибольшие величины КК характерны для ртути и сурьмы (в области месторождений – сотни тысяч), наименьшие – для железо, магния, калия (не больше 10-100). Зная кларк элемента и максимальное значение КК, можно представить себе те пределы, в которых данный элемент будет встречаться в ландшафте.

Каждая отдельная порода характеризуется своим геохимическим спектром – графиком содержания (кларков) различных элементов. Часто строят графики кларков концентрации элементов в какой-либо скважине с глубиной. Для элемента можно построить диаграмму его кларков концентрации в различных породах (почвах).

Геохимия элементов, в том числе их распространенной в земной коре зависит 1) от строения ядра; 2) от строения электронной оболочки. Ядра всех макроэлементов (см. далее) легкие. Согласноправилу Отто-Гаккена, элементов с четными номерами больше, чем с нечетными, причем среди четных преобладают элементы с номерами, кратными четырем.

 

Геохимия - определение, цели, задачи

Геохимия – наука, изучающая распространение атомов химических элементов в космосе и на Земле, историю их существования, происхождение, а также поведение в различных природных условиях.

Понять историю атомов в земной коре (и вообще на Земле и в космосе) можно, лишь изучив свойства этих атомов, так как различные природные процессы, связанные с распределением и миграцией химических элементов в пространстве и времени, являются функцией в первую очередь этих свойств. Современная геохимия учит, что распространенность элементов, т. е. относительные их количества на Земле и в космосе, определяется устойчивостью ядер их атомов, химические же свойства и перемещение атомов (миграция) находятся в тесной связи с характером внешних электронных орбит атомов.

Геохимия, наука сравнительно молодая, переживает в настоящее время стадию особенно интенсивного развития. Достаточно четко оформились следующие основные задачи:

1. Определение относительной и абсолютной распространённости элементов и изотопов в Земле и на её поверхности.

2. Изучение распределения и перемещения элементов в различных частях Земли (коре, мантии, гидросфере и т. д.) для выяснения законов и причин неравномерного распределения элементов.

3. Анализ распределения элементов и изотопов в космосе и на планетах Солнечной системы (космохимия).

4. Изучение геологических процессов и веществ, производимых живыми или вымершими организмами

5.Изучение распространения загрязнённых веществ, связанных с отходами,выбросами…

Геохимия окружающей среды изучает распределение химических элементов верхней части литосферы. Ей приходится много заниматься минералами и горными породами, поскольку они предопределяют форму нахождения веществ и способы их движения в окружающей нас среде. Она должна ответить и на такие вопросы – как сформировался вещественный состав окружающей нас среды, и каковы прогнозы его изменения в будущем. Жизнедеятельность человека протекает на поверхности земной коры, поэтому её вещественный состав непосредственным образом сказывается на качестве его существования. Геохимия участвует в поиске месторождений полезных ископаемых, так как концентрация химических элементов, сконцентрированных в месторождении, постепенно снижается в пространстве при удалении от него.

Практическая значимость

В.И. Вернадский (2005) подчеркивал особую роль геохимии, которая необходима для химиков, геологов, биологов, географов, а её открытия касаются фундаментальных областей физики и подходят к освещению самых общих взглядов на устройство Вселенной. Практическое значение геохимии выражается уже в том, что аномальные содержание веществ в земной коре: очень низкое, или очень высокое может вызвать ряд заболеваний у человека, животных, растений с тяжелыми последствиями. А.А. Сауков (1975) указывал на пользу геохимии в поисках новых источников, видов сырья, что особенно касается рассеянных элементов. По его мнению, человечеству не грозит нехватка минерального сырья, так как в земной коре оно находится в бесконечно большом количестве (относительно потребностей человечества), но в рассеянном состоянии. Необходимы технологии, аналогичные тем, которыми пользуются бактерии, грибы, использующие энергию сол. света для извлечения из первичных минералов горных пород необходимых питательных веществ: фосфатов, солей калия, натрия, кальция, магния, железа и т.д.

Геохимия участвует в поиске месторождений полезных ископаемых, так как концентрация химических элементов, сконцентрированных в месторождении, постепенно снижается в пространстве при удалении от него.

Методология и методы геохимии

Мет.принцип – изучение природных процессов на атомарном уровне, прослеживается судьба атомов в природных системах (природно-естественных).

Атомы в любых природных средах.

Изучение качественного и количественного сосстава.Аналитические методы.

(зависит от количства элемента, от чувствительности метода)

Геохимическое картографирование.

Геохимические методы исследований

Для решения своих задач геохимия пользуется различными методами. Изучение качественного и количественного состава горных пород, минералов, вод, газа, живого вещества ведется аналитическими методами: химическим, микрохимическим, спектрально-оптическим квантометри-ческим, рентгенохимическим, полярографическим, радиохимическим, лю-минесцентным и др.
Геохимия предъявляет к этим методам особые, более повышенные требования, чем другие науки. Иногда приходится комбинировать различные методы, чтобы еще более повысить чувствительность определений.
Одним из наиболее важных методов исследований в геохимии окружающей среды – это сравнительно-географический. В течение ряда последних десятилетий большие успехи сделаны в разработке и применении на практике важного метода — геохимического картирования, т. е. составления для определенного участка территории такой карты, которая давала бы представление о содержании тех или иных элементов в любой точке изучаемого участка. Таковы, например, купрометричеокие карты для медных месторождений, станнометрические карты — для оловянных и т. п. На этих картах точки одинаковых содержаний данного элемента соединяются соответствующими кривыми. Такие карты помогают рационально направлять разведочные работы, а в ряде случаев и производить подсчеты запасов металла в данном месторождении.
Кроме подробных частных карт, можно составлять и общие карты, на которые особыми способами могут наноситься спектры химических элементов (соотношения). Попытки составления таких общих карт делались для массивов изверженных пород.
1. Рентгено-флуоресцентный анализ (РФА, XRF) . В настоящее время наиболее широко используемый метод для определения главных и редких элементов в породах. Можно определить до 80 элементов при широком ряде концентраций от 100 % до первых г/т.
2. Атомно-абсорбционная спектрометрия (ААС). Высокая чувствительность, но не высокая производительность, не может сравнится с РФА и ІСР-MS.
3. Нейтронно-активационный анализ: инструментальный нейтронно-активационный анализ (ИНАА); радиохимический нейтронно-акти-вационный анализ (НАА).
4. Гамма-спектрометрия. Измерение естественной радиоактивности трех элементов U, Th, K. С помощью детектора измеряется характерное излучение каждого элемента.
5. Эмиссионная спектрометрия с индуктивносвязанной плазмой. Отно-сительно новый вид анализа.
6. Масс-спектрометрия. В различной форме это наиболее эффективный метод определения изотопных отношений: масс-спектрометрия с изотопным разбавлением; масс-спектрометрия с индуктивносвязанной плазмой ІСР-MS
7. Электронно-микропробный (микрозондовый анализ). Определение пет-рогенных элементов в единичных малых зернах минералов. По принципу аналогичен рентгено-флуоресцентному методу, но образец возбуждается потоком электронов.
8. Ион-микропробный анализ (ионный зонд). Применяется для определения редких элементов и изотопов.

История науки

Геохимия имеет глубокие корни. Её основы могут быть прослежены в античности, но многие из открытий, лежащих в основе науки, были сделаны между 1800 и 1910 годами. Была составлена периодическая система элементов, открыта радиоактивность и разработана термодинамика гетерогенных систем. Солнечный спектр был использован для определения состава Солнца. Эта информация, совместно с химическими анализами метеоритов, открыла дверь для нового понимания Вселенной.

В течение первой половины двадцатого века множество учёных использовали разнообразные методы для определения состава земной коры, и геохимия многих редких элементов была изучена с использованием появившегося метода эмиссионной спектроскопии. Вернадский основал биогеохимию. Кристаллические структуры большинства минералов были определены методом рентгеновской дифракции. Родилась изотопная геохимия. Огромный прогресс науки и технологий во время Второй мировой войны привёл к появлению новых приборов. Но геохимия в это время ещё развивалась сравнительно медленно. В 1950-х годах всего нескольких журналов было достаточно для публикации всех важных достижений в геохимии. На собрании Американского геофизического общества геохимических сессий было несколько, большинство из них было посвящено локальным проблемам и не выходили за рамки геохимии.

Однако в 1960-х годах начался расцвет геохимии, продолжающийся до сих пор. За это время в науке произошёл существенный прогресс. Атмосферная и морская геохимия интегрировались в геохимию твёрдой Земли; космохимия и биогеохимия внесли огромный вклад в наше понимание истории нашей планеты. Началось изучение Земли как единой системы.

Масштабные морские экспедиции показали, как и насколько быстро смешиваются воды океанов, они продемонстрировали связь между морской биологией, физической океанологией и морским осадконакоплением. Открытие гидротермальных источников показало, как формируются рудные месторождения. Были открыты прежде неизвестные экосистемы, и были выяснены факторы, которые управляют составом морской воды.

Теория тектоники плит преобразила геохимию. Геохимики наконец поняли поведение осадков и океанической коры в зонах субдукции, их погружение и эксгумацию. Новые эксперименты при температурах и давлениях глубин

Земли позволили выяснить, какова трехмерная структура мантии и как происходит генерация магм. Доставка на Землю лунных пород, исследование с помощью космических аппаратов планет и их спутников и успешный поиск планет в других звёздных системах произвели революцию в нашем понимании Вселенной.

Геохимия также тесно срослась с экологией. Открытие озоновых дыр прозвучало как недвусмысленный тревожный признак и источник новых фундаментальных взглядов в фотохимии и динамике атмосферы. Увеличение содержания СО2 в атмосфере вследствие сжигания ископаемого топлива и уничтожения лесов было и будет предметом основных дискуссий о глобальных антропогенных изменениях климата. Исследование этих явлений служит источником новой информации о взаимодействии атмосферы с биосферой, корой и океанами.

На сегодня геохимия заняла ведущее место среди наук о Земле. Она изучает глобальные перемещения вещества и энергии во времени и пространстве. Сбылось предсказание Вернадского о центральной роли геохимии среди наук о веществе.

Ещё версия истории:

Термин геохимия предложен Ф.Шёнбейном (швейц. химик) в 1838 г. для обозначения науки охимических процессах в земной коре.
Этот термин использовал основатель геохимии В.И.Вернадский в первом десятилетии ХХ века для обозначения созданной им науки - науки об истории атомов земли.
В 70-х годах появилась информация о породах Луны, атмосферах Венеры и Марса. Поэтому Перельман отмечает, что геохимия - “изучает естественную историю атомов Земли и других планет земной группы”.

Геохимические знания до возникновения геохимии как науки (истоки геохимии):

1) Понятие о химическом элементе было впервые введено английским врачом и химиком Робертом Бойлем (1627 - 1691).

2) В 1676 г. Христиан Гюйгенс впервые высказал идею о единстве химического состава космоса.

3) В 1794 г. Э. Хладш доказал космическое происхождение метеоритов, в 1802 и 1804 гг. В.Гарвардом (Англия) и Т.Ловицем (Россия) выполнены первые химические анализы метеоритов. Это подтвердило идею о единстве химического состава мироздания (земли и космоса).

4) B 1815 г. В.Филлипсом (Англия) сделана первая попытка выяснить средний химический состав ЗК, оценена распространенность 10-ти химических элементов и показано количественное преобладание 4-х элементов: O, Si, Al, Fe.

5) Ж.Эли-де-Бомон (Франция, 1798 - 1894) связал историю химических элементов с магматическими и вулканическими процессами. Впервые нарисовал картину химической эволюции Земли, основываясь на физических и химических свойствах элементов (начиная от космической эпохи).

6) Возникновение геохимии стало возможным после утверждения атомно-молекулярной теории в физике и химии и выяснения основных особенностей строения атома на основании ПЗ Д.Менделеева, а также накопления большого числа эмпирических данных по распространению химических элементов в минералах и горных породах (всё это происходило в XIX веке).

7) Два открытия второй половины XIX века заложили фундамент геохимии:
- открытие в 1859 г. Р.Бунзеном и Г.Кирхгофом спектрального анализа
- открытие в 1869 г. Д.Менделеевым ПЗ химических элементов.


ВОЗНИКНОВЕНИЕ ГЕОХИМИИ: РАБОТЫ Ф.КЛАРКА, В.И.ВЕРНАДСКОГО, В.М.ГОЛЬШМИДТА, А.Е.ФЕРСМАНА,.П.ВИНОГРАДОВА.
Первая по-настоящему геохимическая проблема и направление геохимии это изучениераспространения и распределения химических элементов в геологических телах и объектах от минералов и пород к ЗК в целом, определение среднего состав ЗК.

Это направление было заложено Ф.Кларком. Он трактовал геохимию как совокупность сведений о химическом составе ЗК и не ставил в качестве задачи геохимии изучение истории атомов планеты. В 1889 г. Ф.Кларк на основе огромного количества анализов горных пород (отобрав 880 анализов) дал первую сводную таблицу среднего химического состава ЗК. В 1908 г. выходит его сводка по геохимии “Data of geochemistry”: данные по составу горных пород, почв, вод; приведен баланс главных химических элементов в верхних оболочках Земли. В 1924 г. совместно сГ.Вашингтоном он публикует последнюю таблицу средней распространенности элементов в 16-км слое Земли - это обобщение послужило фундаментом геохимии.

В.И. Вернадский
Рождение геохимии как отдельной науки произошло в 1908 - 1911 гг. благодаря В.И.Вернадскому. До его работ господствовало представление о минеральной форме нахождения элементов; широко используя спектральный анализ, он определял содержания редких элементов в горных породах исоздал представление о “неминеральной”, “рассеянной” форме нахождения химических элементов(“все элементы есть везде”, но в разных количествах). В трудах В.И.Вернадского дано чёткое определение геохимии, круга изучаемых ею проблем (распределение элементов; история элементов). Первый курс геохимии в России был прочитан в 1912 г. А.Е.Фердсманом, а развитию геохимии за рубежом способствовало преподавание В.И.Вернадским геохимии в Праге и Париже.

Работы В.И.Вернадского охватывают многие разделы геохимии:
- показана важная роль живого вещества в миграции химических элементов (биогеохимия)
- всесторонне оценено значение радиоактивности для всех наук о Земле (ядерная геология) и т.д.
Вокруг В.И.Вернадского формировалась геохимическая школа: А.Е.Ферсман, А.П.Виноградов и многие другие. Он был организатором Радиевого института, биогеохимической лаборатории, Комитета по метеоритам.

А.Е.Ферсман

В 1933 -39 гг. вышел его фундаментальный 4-х томный труд “Геохимия”, который всесторонне оценил проблему распространенности элементов, связав её с последними достижениями астро- и атомной физики. Работы А.Е.Ферсмана были посвящены изучению миграции химическихэлементов в зависимости от строения их атомов и общих физико-химических свойств.

Также А.Е.Ферсман:

1) Выделил факторы миграции химических элементов
2) Дал классификацию геохимических процессов
3) Разрабатывал геоэнергетическую теорию для объяснения последовательности выделения минералов из растворов и расплавов в зависимости от величины энергии кристаллической решётки
4) Был основателем геохимических методов поисков ПИ
5) Оставил плеяду учеников и последователей: В.В.Щербина, А.А.Сауков, К.Власов, Д.И.Щербаков и д.р.

В.М. Гольшмидт (1888 - 1947)

1) На основании данных о строении атомов и их нахождении в природных телах в 1924 г. предложил первую геохимическую классификацию элементов, широко известную и используемую до наших дней
2) Вычислил ионные радиусы для объяснения форм нахождения элементов в минералах, разработал правила изоморфизма



Последнее изменение этой страницы: 2016-07-22

headinsider.info. Все права принадлежат авторам данных материалов.