Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Уравнение эйнштейна для фотоэффекта


Формулы Рэлея - Джинса и Планка

Формула Рэлея - Джинса для спектральной плотности энергетической светимости черного тела имеет вид

(200.1)

 

где áeñ=kT — средняя энергия осциллятора с собственной частотой n. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы, поэтому средняя энергия каждой колебательной степени свободы áeñ=kT .

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана - Больцмана (см. (199.1)) из формулы Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

в то времякак по закону Стефана — Больцмана Rе пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катастрофы». Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

 

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:

где rn,T — спектральная плотность энергетической светимости черного тела, С и А — постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося поло­жения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями — квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):

(200.2)

где h= 6,625×10–34 Дж×с —постоянная Планка. Так как излучение испускается порци­ями, то энергия осциллятора e может принимать лишь определенныедискретные значения, кратные целому числу элементарных порций энергии e0:

В данном случае среднюю энергию áeñ осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана, средняя энергия осциллятора

а спектральная плотность энергетической светимости черного тела

Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

(200.3)

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т. е. при hn<<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка (200.3) совпадает с формулой Рэлея - Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:

Подставляя последнее выражение в формулу Планка (200.3), найдем, что

т. е. получили формулу Рэлея - Джинса (200.1).

Из формулы Планка можно получить закон Стефана - Больцмана. Согласно (198.3) и (200.3),

Введем безразмерную переменную x=hn/(kt); dx=hdn/(kT); dn=kTdx/h. Формула для Re преобразуется к виду

(200.4)

где так как Таким образом, действительно формула Планка позволяет получить закон Стефана - Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана - Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):

откуда

Значение lmax, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя x=hc/(kTlmax), получим уравнение

Решение этого трансцендентного уравнения методом последовательных приближений дает x=4,965. Следовательно, hc/(kTlmax)=4,965, откуда

т. е. получили закон смещения Вина (см. (199.2)).

Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана - Больцмана s и Вина b. С другой стороны, зная экспериментальные значения s и b, можно вычислить значения h и k (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с эксперименталь­ными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

Виды фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

       
  Рис. 2.1 Рис. 2.2    
         

Два электрода (катод К из исследуемого материала и анод А, в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I, образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U, при котором все электроны, испускаемые катодом, достигают анода:

       

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

  , (2.1.1)  

т.е. замерив задерживающее напряжение , можно определить максимальные значения скорости и кинетической энергии фотоэлектрона.

При изучении ВАХ разнообразных материалов при разных частотах падающего на катод излучения и разных энергетических освещенностях катода и обобщении полученных данных были установлены три закона внешнего фотоэффекта.

 

Спектр атома водорода по бору

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем — систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.

Следуя Бору, рассмотрим движение электрона в водородоподобной системе, ограничиваясь круговыми стационарными орбитами. Решая совместно уравнение (208.1) , предложенное Резерфордом, и уравнение (210.1), получим выраже­ние для радиуса n-й стационарной орбиты:

(212.1)

где n = 1, 2, 3, ... . Из выражения (212.1) следует, что радиусы орбит растут пропорци­онально квадратам целых чисел.

Для атома водорода (Z = 1) радиус первой орбиты электрона при n = 1, называемый первым боровоским радиусом (а), равен

(212.2)

что соответствует расчетам на основании кинетической теории газов. Так как радиусы стационарных орбит измерить невозможно, то для проверки теории необходимо обратиться к таким величинам, которые могут быть измерены экспериментально. Такой величиной является энергия, излучаемая и поглощаемая атомами водорода.

Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (тev2/2) и потенциальной энергии в электростатическом поле ядра (–Ze2/(4pe0r)):

(учли, что ; см. (208.1)). Учитывая квантованные для радиуса n-й стационарной орбиты значения (212.1), получим, что энергия электрона может принимать только следующие дозволенные дискретные значения:

(212.3)

где знак минус означает, что электрон находится в связанном состоянии.

Из формулы (212.3) следует, что энергетические состояния атома образуют после­довательность энергетических уровней, изменяющихся в зависимости от значения n. Целое число n в выражении (212.3), определяющее энергетические уровни атома, называется главным квантовым числом. Энергетическое состояние с n=1 является основным (нормальным) состоянием; состояния с n > 1 являются возбужденными. Энергетический уровень, соответствующий основному состоянию атома, называется основным (нормальным) уровнем; все остальные уровни являются возбужденными.

Придавая n различные целочисленные значения, получим для атома водорода (Z = 1), согласно формуле (212.3), возможные уровни энергии, схематически представ­ленные на рис. 294. Энергия атома водорода с увеличением n возрастает и энергетичес­кие уровни сближаются к границе, соответствующей значениюn = ¥. Атом водорода обладает, таким образом, минимальной энергией (E1 = –13,55 эВ) при n = 1 и максимальной (Е¥ = 0) при n = ¥. Следовательно, значениеЕ¥ = 0 соответствуетионизацииатома (отрыву от него электрона). Согласно второму постулату Бора (см. (210.2)), при переходе атома водорода (Z= 1) из стационарного состояния л в стационарное состояние т с меньшей энергией испускается квант

откуда частота излучения

(212.4)

где R = mee4/(8h3 ).

Воспользовавшись при вычислении R современными значениями универсальных постоянных, получим величину, совпадающую с экспериментальным значением постоянной Ридберга в эмпирических формулах для атома водорода. Это совпадение убедительно доказывает правильность полученной Бором формулы (212.3) для энергетических уровней водородоподобной системы.

Подставляя, например, в формулу (212.4) т=1 и п=2, 3, 4, ..., получим группу линий, образующих серию Лаймана (см. § 209) и соответствующих переходам электро­нов с возбужденных уровней (n = 2, 3, 4, ...) на основной (m = l). Аналогично, при подстановке m = 2, 3, 4, 5, 6 и соответствующих им значений nполучим серии Бальмера, Пашена, Брэкета, Пфунда и Хэмфри (часть из них схематически представлена на рис. 294). Следовательно, по теории Бора, количественно объяснившей спектр атома водорода, спектральные серии соответствуют излучению, возникающему в результате перехода атома в данное состояние из возбужденных состояний, расположенных выше данного.

Спектр поглощения атома водорода является линейчатым, но содержит при нормальных условиях только серию Лаймана. Он также объясняется теорией Бора. Так как свободные атомы водорода обычно находятся в основном состоянии (стационарное состояние с наименьшей энергией при n = 1), то при сообщении атомам извне определенной энергии могут наблюдаться лишь переходы атомов из основного состояния в возбужденные (возникает серия Лаймана).

Теория Бора была крупным шагом в развитии атомной физики и явилась важным этапом в создании квантовой механики. Однако эта теория обладает внутренними противоречиями (с одной стороны, применяет законы классической физики, а с другой — основывается на квантовых постулатах). В теории Бора рассмотрены спектры атома водорода и водородоподобных систем и вычислены частоты спектральных линий, однако эта теория не смогла объяснить интенсивности спектральных линий и ответить на вопрос: почему совершаются те или иные переходы? Серьезным недостатком теории Бора была невозможность описания с ее помощью спектра атома гелия — одного из простейших атомов, непосредственно следующего за атомом водорода.

Гипотеза де бройля

Корпускулярно-волновой дуализм (от лат. dualis — двойственный) — является важнейшим универсаль­ным свойством природы, которое состоит в том, что каждому микрообъекту присущи сразу и корпускулярные, и волновые характеристики.

 

Например, электрон, нейтрон, фотон в одних условиях ведут себя как частицы, которые двигаются по классическим траекториям и имеют определенную энергию и импульс, а в других — обнаруживают свою волновую природу, которая характерна для явлений интерференции и дифракции частиц.

 

Ранее всего корпускулярно-волновой дуализм был определен для света. Распространение света как потока фотонов и квантовый характер взаимодействия света с веществом подтверждаются многочисленными экспериментами. Но ряд оптических явлений (интерференция, поляризация, дифракция) неоспоримо говорят о волновых свойствах света.

 

Классическая физика всегда отчетливо разделяла объекты, которые обладают волновой природой (на­пример, свет и звук), и объекты, которые обладают дискретной корпускулярной структурой (например, системы материальных точек). Одним из самых важных достижений современной физи­ки является убеждение в ложности противопоставления волновых и квантовых свойств света. Если рас­сматривать свет как поток фотонов, а фотоны — как кванты электромагнитного излучения, которые обла­дают в одно время и волновыми, и корпускулярными свойствами, современная физика может объединить антагонистичные теории — волновую и корпускулярную. В результа­те создалось представление о корпускулярно-волновом дуализме, которое лежит в основе современной физики (корпускулярно-волновой дуализм оказывается первичным принципом квантовой механики и квантовой теории поля).

 

Квант света — не является ни волной и ни корпускулой в понимании Ньютона. Фотоны — это специфические микро­частицы, у которых энергия и импульс (в отличие от обычных материальных точек) выражают­ся при помощи материальных характеристик — частоту и длину волны.

В 1924 г. французским ученым Луи де Бройлем была озвучена гипотеза о том, что корпускулярно-волновой дуализм присущ каждому без исключения виду материи — электронам, протонам, атомам, причем количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и установленные раньше для фотонов. Т.е., если частица обладает энергией Е и импульсом, абсолютное значение которого равняетсяp, значит, с этой частицей связана волна частотой v=E/h и длиной

 

,

 

где — в данном случае является постоянной Планка.

 

Это знаменитая формула де Бройля — одна из важнейших формул в физике микромира.

 

Стоит заметить, что длина волны де Бройля уменьшается с увеличением массы частицы m и ее скорости v: для частиц с правдиво .

Таким образом, частице массой 1 г, которая движется со скоростью 1 м/с, соответствует волна де Бройля длиной , настолько маленькой, что это невозможно наблюдать. Поэтому волновые свойства являются несущественными в механике макроскопических тел, что полностью согласуется с принципом соответствия.

Формулы Рэлея - Джинса и Планка

Формула Рэлея - Джинса для спектральной плотности энергетической светимости черного тела имеет вид

(200.1)

 

где áeñ=kT — средняя энергия осциллятора с собственной частотой n. Для осциллятора, совершающего колебания, средние значения кинетической и потенциальной энергий одинаковы, поэтому средняя энергия каждой колебательной степени свободы áeñ=kT .

Как показал опыт, выражение (200.1) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея - Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис. 288). Кроме того, оказалось, что попытка получить закон Стефана - Больцмана (см. (199.1)) из формулы Рэлея - Джинса приводит к абсурду. Действительно, вычисленная с использованием (200.1) энергетическая светимость черного тела (см. (198.3))

в то времякак по закону Стефана — Больцмана Rе пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катастрофы». Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

 

В области больших частот хорошее согласие с опытом дает формула Вина (закон излучения Вина), полученная им из общих теоретических соображений:

где rn,T — спектральная плотность энергетической светимости черного тела, С и А — постоянные величины. В современных обозначениях с использованием постоянной Планка, которая в то время еще не была известна, закон излучения Вина может быть записан в виде

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося поло­жения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями — квантами, причем энергия кванта пропорциональна частоте колебания (см. (170.3)):

(200.2)

где h= 6,625×10–34 Дж×с —постоянная Планка. Так как излучение испускается порци­ями, то энергия осциллятора e может принимать лишь определенныедискретные значения, кратные целому числу элементарных порций энергии e0:

В данном случае среднюю энергию áeñ осциллятора нельзя принимать равной kT. В приближении, что распределение осцилляторов по возможным дискретным состояниям подчиняется распределению Больцмана, средняя энергия осциллятора

а спектральная плотность энергетической светимости черного тела

Таким образом, Планк вывел для универсальной функции Кирхгофа формулу

(200.3)

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т. е. при hn<<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка (200.3) совпадает с формулой Рэлея - Джинса (200.1). Для доказательства этого разложим экспоненциальную функцию в ряд, ограничившись для рассматриваемого случая двумя первыми членами:

Подставляя последнее выражение в формулу Планка (200.3), найдем, что

т. е. получили формулу Рэлея - Джинса (200.1).

Из формулы Планка можно получить закон Стефана - Больцмана. Согласно (198.3) и (200.3),

Введем безразмерную переменную x=hn/(kt); dx=hdn/(kT); dn=kTdx/h. Формула для Re преобразуется к виду

(200.4)

где так как Таким образом, действительно формула Планка позволяет получить закон Стефана - Больцмана (ср. формулы (199.1) и (200.4)). Кроме того, подстановка числовых значений k, с и h дает для постоянной Стефана - Больцмана значение, хорошо согласующееся с экспериментальными данными. Закон смещения Вина получим с помощью формул (197.1) и (200.3):

откуда

Значение lmax, при котором функция достигает максимума, найдем, приравняв нулю эту производную. Тогда, введя x=hc/(kTlmax), получим уравнение

Решение этого трансцендентного уравнения методом последовательных приближений дает x=4,965. Следовательно, hc/(kTlmax)=4,965, откуда

т. е. получили закон смещения Вина (см. (199.2)).

Из формулы Планка, зная универсальные постоянные h, k и с, можно вычислить постоянные Стефана - Больцмана s и Вина b. С другой стороны, зная экспериментальные значения s и b, можно вычислить значения h и k (именно так и было впервые найдено числовое значение постоянной Планка).

Таким образом, формула Планка не только хорошо согласуется с эксперименталь­ными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Ее решение стало возможным лишь благодаря революционной квантовой гипотезе Планка.

Виды фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

       
  Рис. 2.1 Рис. 2.2    
         

Два электрода (катод К из исследуемого материала и анод А, в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I, образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U, при котором все электроны, испускаемые катодом, достигают анода:

       

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

  , (2.1.1)  

т.е. замерив задерживающее напряжение , можно определить максимальные значения скорости и кинетической энергии фотоэлектрона.

При изучении ВАХ разнообразных материалов при разных частотах падающего на катод излучения и разных энергетических освещенностях катода и обобщении полученных данных были установлены три закона внешнего фотоэффекта.

 

уравнение эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света — это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями — квантами, обладающими энергией .

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц — фотонов, движущихся в вакууме со скоростью .

Каждый фотон монохроматического света, имеющего частоту , несёт энергию .

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света — это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона ? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода по извлечению электрона из вещества и на придание электрону кинетической энергии :

(4)

Слагаемое оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла — тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию — на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку . Эти



Последнее изменение этой страницы: 2016-07-22

headinsider.info. Все права принадлежат авторам данных материалов.