Главная

Категории:

ДомЗдоровьеЗоологияИнформатикаИскусствоИскусствоКомпьютерыКулинарияМаркетингМатематикаМедицинаМенеджментОбразованиеПедагогикаПитомцыПрограммированиеПроизводствоПромышленностьПсихологияРазноеРелигияСоциологияСпортСтатистикаТранспортФизикаФилософияФинансыХимияХоббиЭкологияЭкономикаЭлектроника






Значуща цифра числа. Вірна значуща цифра


Будь-яке наближене число а в десятинній (як і у будь-якій позиційній) системі числення можна записати у вигляді

(1.5)

де аі – цифри числа (і = 1, 2, …, n) (а1 ¹ 0); m – ціле число (старший розряд числа а).

 

Приклад 1.3141,59 = 3·103 + 1·102 + 4·101 + 1·100 + 5·10-1 + 9·10-2.

 

Точність обчислення визначає не кількість десятинних знаків, а кількість значущих цифр результату.

Значущими цифрами числа а називають всі цифри в його десятинному зображенні, починаючи з першої цифри зліва, відмінної від нуля. Наприклад, числа 0,001405 і 5,0300 мають відповідно чотири і п‘ять значущих цифр.

Нулі в кінці числа 5,0300 показують, що число задане з точністю до десятитисячних, інакше вони не були б записані.

Точність наближеного числа залежить не від кількості значущих цифр, а від того, скільки значущих цифр заслуговують довіри, тобто від кількості правильних значущих цифр.

Значущу цифру аn числа (1.5) називають правильною, якщо абсолютна похибка цього числа

Δа £ w·10m-n+1. (1.6)

В залежності від величини w в (1.6) говорять про правильність значущих цифр у вузькому (w = 0,5) і широкому (w = 1,0) сенсі. Якщо нерівність (1.6) не виконується, то цифру аn називають сумнівною.

Таким чином, приблизне число амістить n правильних цифр (в вузькому сенсі), якщо абсолютна похибка цього числа не перевищує половини одиниці десятинного розряду, який виражається значущою цифрою, рахуючи зліва направо.

Приклад 2. Для точного числа А=17,976 число а=17,98 є приблизним числом з 4-ма вірними знаками в вузькому сенсі, тому що

Δа = = = 0,004 ≤ 0,5·101-4+1 = 0,5·10-2 = 0,005.

 

Число а=17,97 є приблизним з 4-ма вірними цифрами в широкому сенсі, тому що

 

Δа = = = 0,006 < 1·101-4+1 = 1·10-2 = 0,01.

 

Число а=17,97 є приблизним тільки з 3-ма вірними цифрами в вузькому сенсі, тому що

 

Δа = = = 0,006 > 0,5·101-4+1 = 1·10-2 = 0,005.

 

Приклад 3. Визначити скільки вірних значущих цифр містить приблизне число а=85,267 ± 0,0084 в вузькому і широкому сенсі.

Із умови видно, що 0,0084 < 0,05. Тоді в вузькому сенсі:

 

0,05 = 0,5∙10m-n+1

при m = 1 (розряд десяток) маємо 0,5·10-1 = 0,5∙101-n+1 → -1=1- n +1 → n = 3.

Таким чином, вірними є цифри 8, 5 і 2.

В широкому сенсі 0,0084 < 0,01. При m = 1 (розряд десяток) маємо 1·10-2 = 1∙101-n+1 → -2=1- n +1 → n = 4. Таким чином, вірними є цифри 8, 5, 2 і 6.

 

Приклад 4.Визначити граничну абсолютну похибку приблизних чисел а=96,387 і b=9,32, якщо вони містять тільки вірні цифри в вузькому і широкому сенсах відповідно.

Тому що для числа а=96,387 остання цифра 7, що стоїтьв розряді тисячних знаків є вірною значущою цифрою в вузькому сенсі, то Δа ≤ 0,5∙0,001, тобто Δ*а = 0,0005. Тоді число а можна записати в вигляді а=96,387 ± 0,0005.

Для числа b=9,32 остання цифра 2, що стоїтьв розряді ситих знаків є вірною значущою цифрою в широкому сенсі, то Δb ≤ 1∙0,01, тобто Δ*b = 0,01. Тоді число b можна записати в вигляді а=9,32 ± 0,01.

 

Оцінка похибки функції (Загальна задача теорії похибок)

Задача полягає у визначенні похибки функції U = f за відомими абсолютними (граничними) похибками аргументів

Розв‘язання загальної задачі одержують за допомогою формул:

= ; (1.7)

= = . (1.8)

Приклад 5. Визначити граничні абсолютну і відносну похибки об‘єму кулі при см.

В даній задачі аргументами є і d і π, тому що – теж наближене число. За формулою (1.7) маємо граничну абсолютну похибку

 

см3.

Гранична відносна похибка

.

Оцінка похибки математичних дій

На підставі формул (1.7), (1,8) можна сформулювати правила оцінки граничних похибок при виконанні математичних дій з наближеними числами.

– Похибки додавання (віднімання)

Нехай , де . Тоді

. (1.9)

Якщо при , то

. (1.10)

– Похибки множення (ділення)

Нехай де . Тоді

(1.11)

Граничну абсолютну похибку легко визначити за формулою

Якщо при , то

. (1.12)

– Похибки ступеня і кореня

Якщо , то . (1.13)

Якщо U = , то . (1.14)

Оцінку похибки будь-якої послідовності математичних дій одержують при послідовному застосуванні наведених вище правил оцінки похибок.

Приклад 6.Визначення граничної відносної похибки функції

виглядає так

 

Обернена задача теорії похибок

Задача полягає у визначенні абсолютних похибок аргументів функції, при яких абсолютна похибка функції не буде перевищувати заданого значення. Така задача однозначно розв‘язується тільки для функції одного аргументу. У загальному випадку для її розв‘язання використовують припущення про однаковий вклад всіх доданків у формулі (1.7) на формування похибки функції ΔU, тобто приймають

В такому разі із (1.7) маємо

(1.15)

Приклад 7.Розрахунок абсолютних похибок аргументів функції , якщо (при ) виглядає так

;

Лекція 2. НАБЛИЖЕНІ МЕТОДИ РОЗВ‘ЯЗУВАННЯ НЕЛІНІЙНИХ

(АЛГЕБРИЧНИХ І ТРАНСЦЕНДЕНТНИХ) РІВНЯНЬ

 

Загальні відомості

 

Нехай задано рівняння з однією змінною

, (2.1)

де функція визначена і неперервна на деякому проміжку [RН, RВ].

Розв‘язати рівняння означає знайти множину його коренів, тобто таких значень [RН, RВ], при яких рівняння (2.1) перетвориться в тотожність. Якщо функція – алгебричний багаточлен, то рівняння (2.1) називають алгебричним. Якщо містить тригонометричні, показникові або логарифмічні функції, тоді рівняння (2.1) називають трансцендентним.

Універсальних методів для знаходження точних значень коренів алгебричних рівнянь ступеня і трансцендентних рівнянь не існує. Тому важливого значення набувають наближені методи знаходження коренів рівняння з достатньою для практики точністю.

Задача знаходження коренів рівняння (2.1) вважається розв‘язаною, якщо корені обчислені із наперед заданою точністю.

Наближене знаходження коренів рівняння (2.1) складається з двох етапів:

1) відокремлення коренів, тобто виділення проміжків скінченої довжини (відрізків ізоляції коренів) де міститься один єдиний корінь рівняння;

2) обчислення коренів з наперед заданою точністю (уточнення коренів).

Корені рівняння (2.1) можуть бути дійсними і комплексними. Далі розглянуто наближені методи обчислення тільки дійсних коренів.

 

Відокремлення коренів

 

Найбільш поширеними методами відокремлення коренів є аналітичний і графічний.

Аналітичний метод передбачає розрахунок значень функції (і її знаків) в ряді точок. Для знаходження відрізків ізоляції коренів рівняння (2.1) в межах зони існування коренів [RН, RВ] достатньо визначити точки і , для яких f(a)·f(b) < 0, тобто f(a) і f(b) мають протилежні знаки. Для того, щоб гарантувати, що на відрізку [a, b] є тільки один корінь, необхідно розраховувати значення функції у великій кількості точок, що буває недоцільно.

Графічний метод відокремлення коренів існує в двох різновидах:

1) будують графік функції , знаходять точки перетину графіка з віссю абсцис і визначають навколо цих точок відрізки [a, b];

2) всі члени рівняння (2.1) поділяють на дві групи, одну з яких записують в лівій, а другу – в правій частині рівняння, тобто зображують його у вигляді

і будують графіки функцій і ; далі знаходять межі (відрізки [a, b]), в яких містяться абсциси точок перетину графіків функцій y1 і y2.

2.3 До запитання про розв‘язання алгебричних рівнянь

 

2.3.1 Визначення кількості дійсних коренів

Наближено визначити кількість дійсних додатних коренів алгебричного рівняння

 

(2.2)

 

можна за допомогою правила Декарта: кількість дійсних додатних коренів алгебричного рівняння із дійсними коефіцієнтами дорівнює числу змін знаку в послідовності коефіцієнтів рівняння, або на парне число менше (коефіцієнти, що дорівнюють нулю не враховуються).

Кількість від‘ємних коренів алгебричного рівняння дорівнює числу змін знаку в послідовності коефіцієнтів рівняння або на парне число менше.

2.3.2 Визначення області існування коренів

Розглянемо два з декількох методів визначення верхньої межі додатних коренів рівняння .

Метод Лагранжа. Якщо коефіцієнти многочлена відповідають умовам a0 > 0, a1, a2, …,am-1 ≥ 0, am < 0, то верхня межа додатних коренів рівняння (2.2) визначається за формулою

(2.3)

де В – найбільша із абсолютних величин від‘ємних коефіцієнтів;

m – ступінь х при першому від’ємному коефіцієнті а.

Метод Ньютона. Якщо при х = С многочлен і його похідні , … приймають додатні значення, то С є верхньою межею додатних коренів рівняння .

Існує засіб визначення інших меж дійсних коренів з використанням методів визначення верхньої межі додатних коренів .

Якщо

рівняння ,

—″— —″— ,

—″— —″— ,

—″— —″— ,

то всі відмінні від нуля дійсні корені рівняння (якщо вони існують) лежать у середині інтервалів

і .

Визначимо, наприклад, межі додатних і від‘ємних коренів рівняння

.

Знайдемо за методом Лагранжа R1, R2, R3, R4. У многочлені a0 = 8

> 0; а1 = 0; а2 = -8 < 0; a3 = -32; a4 = 1, m = 2. Отже, .

Для многочлена

Аналогічно знаходимо .

Далі, для многочлена

a0 = 1 > 0; a1 = -32 < 0, тобто m = 1, B = 32 i R3 = 1 + 32 = 33.

Зрештою, для многочлена

Маємо a0 = 1 > 0; a1 = 32; a2 = -8; a3 = 0; a4 = 8, тобто m = 2; B = 8. Тому .

Отже, якщо задане рівняння має дійсні корені, вони обов‘язково лежать у межах (-2; -1 / 3,828) і (1 / 33; 3).

2.3.3 Обчислення значень многочлена. Схема Горнера

Розв‘язування алгебричних рівнянь як на етапі відокремлення коренів, так і при їх уточненні потребує багаторазових обчислень значень . Тому важливе значення має побудова найбільш економічних (з точки зору кількості операцій) алгоритмів.

Припустимо, що треба розрахувати значення многочлена (див. (2.2)) при . Обчислення вигідно проводити для перетвореного запису (2.2) до наступного вигляду

(2.4)

Послідовне обчислення чисел (n множень і n додавань)

· · · · · · ·

дає значення .

Алгоритм розрахунку , який складено на основі виразу (2.4) називають схемою Горнера. Саме у вигляді схеми розрахунки розташовують так:

+
+
+
+
+
a0 a1 a2 a3 … an-1 an

ε b0·ε b1·ε b2·ε … bn-2·ε bn-1·ε

b0 b1 b2 b3 … bn-1 bn.

В першому рядку записані коефіцієнти многочлена . В третій рядок переносять a0 = b0 і далі суму добутку кожного коефіцієнта bi на ε із аі+1.

Уточнення коренів

До найбільш поширених методів уточнення коренів алгебричних і трансцендентних рівнянь відносять методи:

– половинного ділення (інші назви: бісекції, дихотомії);

– хорд (помилкового положення);

– дотичних (Ньютона);

2.4.1 Метод половинного ділення

Суть методу, в тому, що відрізок ізоляції кореня [а, b] ділять навпіл точкою х1 = 0,5(а+b) і обчислюють f(x1). Якщо f(x1) = 0, то х1 є точне значення кореня. Якщо f(x1) ¹ 0, але (b-a) £ 2ε (ε – задана точність визначення кореня) , то х1 – є наближене значення кореня що знайдено із заданою точністю. Якщо f(x1) ¹ 0 і

(b-a) > 2ε, тоді розглядають той з двох відрізків [a, x1] і [x1, b], на кінцях якого функція f(x1) набуває значень протилежних знаків (рис. 2.1). Цей відрізок знов ділять навпіл точкою х2 (друге наближення кореня) і так само визначають, чи не перевищує абсолютна похибка наближення кореня х2 величини ε. Очевидно, що знаходження чергового наближення кореня після n ітерацій здійснюється за виразом

xn+1 = 0,5(an + bn). (2.5)

 

Рисунок 2.1 – Графічне зображення суті методу половинного ділення

Алгоритм методу половинного ділення можна зобразити таким чином:

Завдання a, b, ε;

R = f(a);

► x = 0,5(a + b);

f(x);

якщо то х – корінь;

да, то

інакше R·f(x) < 0 ?

ні, то , R = f(x) ►.

2.4.2Метод хорд

В цьому методі відрізок С ділять не навпіл, а у відношенні f(a) / f(b). Суть методу полягає в тому, що за наближення до кореня приймаються значення x1, x2, x3, …, xn точок перетину хорди з віссю абсцис (рис. 2.2).

 

Рисунок 2.2 – Графічне зображення ідеї методу хорд

 

Наступне наближення кореня визначається за формулою

(2.6)

де с – так звана нерухома точка, за яку приймається той з кінців відрізка [а, b], для котрого знак функції збігається зі знаком другої похідної ( ). На рис. 2.2 с = а. Другий кінець відрізка [а, b] приймається за початкове наближення х0, що використовується формулою (2.6).

Ітераційний процес закінчується при виконанні умови

,

де – найменше значення модуля першої похідної на відрізку [а, b].

Для використання методу хорд необхідно для інтервалу [a, b] обчислити

і . За допомогою одержаних значень визначити величини m, c, x0 таким чином: ; якщо f(a) і мають однаковий знак, то с = а і х0 = b (відповідно, якщо однаковий знак мають f(b) і , то с = b і х0 = а).

Далі алгоритм методу хорд виглядає так:

Завдання ε, m, c, x0;

f(c);

R = f(x0);

► x = ;

f(x);

якщо , то х – корінь;

інакше: R = f(x), x0 = x ►.

2.4.3 Метод дотичних

Метод полягає в побудові ітераційної послідовності

, (2.7)

що збігається до кореня рівняння f(x) = 0.

Достатні умови збіжності метода: послідовність (2.7) збігається до дійсного значення кореня рівняння f(x) = 0, якщо початкове наближення кореня (х0) належить інтервалу [а, b], на котрому і зберігають свій знак і задовольняється умова .

За х0 приймають той з кінців відрізка [а, b], для якого (в методі хорд це нерухома точка).Метод допускає просту геометричну інтерпретацію, а саме: якщо через точку з координатами провести дотичну, то абсциса точки перетину цієї дотичної з віссю х і є чергове наближення кореня рівняння f(x) = 0 (рис. 2.3).

Ітерації продовжуються до виконання умови

,

Де М – найбільше значення модуля другої похідної на відрізку [а, b],

.

 

 

Рисунок 2.3 – Графічне подавання ідеї методу дотичних

 

Для використання методу дотичних необхідно для інтервалу [a, b] обчислити і . За допомогою одержаних значень визначити величини m, М, x0 таким чином: ; , якщо f(a) і мають однаковий знак, то х0 = а.

Далі алгоритм методу дотичних може виглядати так:

Завдання ε, m, М, x0;

► х = х0;

f(x);

;

якщо , то х – корінь;

інакше: x0 = x ►.

Метод дотичних має високу швидкість збіжності, однак недоліком його є необхідність обчислення похідної на кожній ітерації. Якщо мало змінюється на відрізку [а, b], то можна значно зменшити обсяг обчислень, якщо скористуватися модифікованим методом Ньютона з використанням формули

.

2.4.4 Комбінований метод хорд і дотичних

Методи хорд і дотичних дають наближення кореня з різних боків. Тому їх часто поєднують і уточнення кореня відбувається скоріше.

На кожній ітерації використовується спочатку формула (2.7), потім – формула (2.6), в якій за с приймають значення x, що розраховано на даному кроці за формулою(2.7). Процес закінчується, коли Остаточне значення кореня визначається формулою

, (2.8)

де і – наближення кореня, які розраховані відповідно за формулами (2.6) і (2.7).

2.4.5 Метод ітерацій

Для знаходження кореня методом ітерацій (простих) рівняння f(x) = 0 приводять до вигляду так, щоб виконувалось співвідношення , яке є достатньою умовою збіжності ітераційного процесу.

На інтервалі [а, b] обирають початкове наближення х0 (бажано в середині інтервалу, щоб похибка заокруглення не вивела за межі [а, b], де виконуються умови збіжності); наступні наближення визначаються за формулою

(2.9)

доти, поки не буде виконано умову

(2.10)

(можна прийняти ).

З геометричної точки зору коренем рівняння є абсциса точки перетину кривої і прямої

Характер зміни в процесі обчислень за формулою (2.9), а також вид умови закінчення ітерацій залежать від знака і абсолютної величини на інтервалі [а, b].

– Якщо , то послідовні наближення сходяться до кореня монотонно. При цьому, якщо q £ 0,5 за умову закінчення ітерацій можна прийняти

. (2.11)

– Якщо , то послідовні наближення коливаються навколо дійсного значення кореня і при цьому також можна користуватися умовою (2.11). Таким чином, умову (2.10) необхідно використовувати тільки в тих випадках, коли і .

Не завжди легко обрати функцію , що задовольняє умові збіжності.

Розглянемо один з алгоритмів переходу від рівняння до рівняння Помножимо ліву і праву частини рівняння на довільну константу h і додамо до обох частин невідоме х

при цьому корені вихідного рівняння не зміняться.

Позначимо і одержимо

Очевидно, що при будь-яких рівняння і рівносильні. Константу бажано обрати такою, щоб , тоді буде забезпечена збіжність ітераційного процесу.

Похідна . Найбільша швидкість збіжності має місце при , тоді і ітераційна формула (2.9) переходить у формулу Ньютона (метода дотичних)

.

 



Последнее изменение этой страницы: 2016-07-23

headinsider.info. Все права принадлежат авторам данных материалов.